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Abstract

District elections have long been considered a tool for promoting minority representation in
local government. But surprisingly little is understood about how electoral maps themselves
shape political outcomes. We collect over one hundred new districting plans from cities across
California that converted from at-large to district elections in the wake of the California Voting
Rights Act of 2001. Applying a state-of-the-art automated redistricting simulator, we find that
most of these cities could not feasibly produce a plan with even one Latino-majority seat, though
those that could generally tried to maximize this quantity. We introduce alternative metrics
of descriptive representation that are tailored to a city’s political dynamics and risk tolerance
around securing at least one Latino seat. Contrary to intuitions from partisan districting, we
see no conflict between the goals of guaranteeing minimal representation and maximizing seats
overall; rather, we find that concentrating Latino voters within districts often achieves both
goals and at no expense for Latinos’ substantive representation.
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Introduction

Single-member district elections have long been considered a tool for improving the descriptive rep-

resentation of minority groups (Davidson and Korbel 1981; Welch 1990), especially where districts

can be drawn that make the minority a local majority (Abott and Magazinnik 2020; Trounstine

and Valdini 2008). Consequently, legal action and even statewide legislation have prompted hun-

dreds of cities across the United States to switch from multi-member at-large city council elections

to district systems in recent decades. An active academic literature has kept apace with these

developments, analyzing how the adoption of district elections changes both representation and

policy at the local level (Abott and Magazinnik 2020; Collingwood and Long 2019; Dancygier 2014;

Hankinson and Magazinnik 2023).

Almost universally, these studies have defined districting as a uniform treatment, with no con-

sideration for how the districting plans that are actually drawn aggregate votes into council seats.

But, as scholars and practitioners of state and federal legislative districting are well aware, the

specific shape and location of district boundaries deeply matter for electoral outcomes. In the

partisan context, a plan can systematically advantage one party by either diluting its rival party’s

voters across multiple districts (“cracking”) or overconcentrating them in a few districts (“pack-

ing”). Falling either just below or too far above the threshold of 50% of the two-party vote share

“wastes” votes, leading a party to win fewer seats than what would be proportional to its popu-

lation share (Stephanopoulos and McGhee 2015). In the American first-past-the-post system, the

massive swings in the compositions of legislatures that can result from even small perturbations of

district boundaries have generated enormous scholarly attention, not to mention legal and political

dispute.

And yet, the insights from these debates have not yet been systematically applied to the prac-

tice of local districting. Our paper fills this gap. We adapt the statistical and computational

tools developed for partisan districting to build theory and evidence for a new and important con-

text: minority representation in local government. In so doing, we develop a research design that

also advances the study of districting and minority representation more broadly, including at the

congressional level. Previous work on minority representation has treated individual districts as

the unit of analysis, studying the population thresholds that racial minorities must clear in order
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to achieve descriptive or substantive representation (e.g., Cameron, Epstein and O’Halloran 1996).

While this work has yielded important substantive insights, treating districts as the unit of analysis

can only provide a partial view of the issues: not only does the concentration of minority voters in

one district mechanically constrain the compositions of the other districts’ electorates, but how one

district’s elected council member represents her constituents is enabled and constrained by other

members of the council. To see the full picture of representation, one must zoom out to the entire

ecosystem: the district plan and the composition of the entire legislative body that it generates.

Recent advances in simulation-based methods for studying all possible districting plans within a

city enable us to do just that.

A central challenge of this enterprise — and, by the same token, an opportunity to advance

the literature — is that the logic of partisan districting does not translate cleanly to the axis

of ethnic conflict in local politics. The focus of partisan districting is the 50% two-party vote

share threshold. In theory, if a minority voting bloc is greater than 50% of the citizen voting-age

population (CVAP) in some district, they have the ability to elect their candidate of choice. But

given historically lower levels of turnout among minority voters compared to white voters (Fraga

2018), a threshold greater than 50% may be needed to provide a “realistic opportunity to elect

officials of their choice” (Kirksey v. Board of Supervisors of Hinds County Mississippi, 554 F.2nd

559 (1977)). By the early 1980s, legal opinions consistently cited 65 percent as the standard for

“realistic opportunity,” despite having little empirical basis for this threshold (Brace et al. 1988).

While the “65 percent rule” acknowledges inequalities of resources, turnout, and political orga-

nization, it also risks magnifying these disparities. If the threshold for minority representation is set

too high, it will lead to the packing of minority voters into fewer districts at the expense of creating

realistic opportunities in more districts. For example, research on congressional districting suggests

that Black populations well below the 50% threshold have been able to elect Black members of

Congress due to coalition voting with non-Black Democrats (Cameron, Epstein and O’Halloran

1996; Lublin 1997; Lublin et al. 2020). Even in contexts of intense racially polarized voting, such

as the American South, concentrating Black voters in excess of 47% CVAP has been found to be

inefficient (Cameron, Epstein and O’Halloran 1996).

We tackle this question empirically by developing a novel approach for understanding how

different feasible districting plans within a city translate into citywide electoral outcomes for the
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minority group, given the facts on the ground related to the city’s electoral geography and political

behavior. To do so, we leverage the California Voting Rights Act (CVRA), which continues to

compel California cities to switch from at-large to district elections in order to increase the electoral

success of Latino candidates and therefore the descriptive representation of Latino voters. We

combine electoral and administrative data from cities that adopted brand-new districting plans

in response to the CVRA. Then, we use the redistricting algorithm developed by Fifield et al.

(2020) to characterize the distribution of feasible plans within each city, given its unique physical

and residential geography coupled with the federal contiguity, compactness, and equal-population

constraints. Finally, we use real-world city council election data to model electoral outcomes

under each feasible plan. This gives us new insight into how district maps can maximize minority

electoral success, not just across cities but compared to what is possible within each city. Moreover,

comparing the adopted maps to these distributions allows us to assess whether cities generally chose

plans that were favorable to minority voters — and what they optimized for in their choices.

First, we find that the metric of Latino representation that was the focus of city council meetings,

interest groups, and indeed the CVRA itself — the share of districts in which the Latino CVAP is

more than 50% of total CVAP — is not useful for evaluating maps in the majority of our cities. In

58% of our sample, it is impossible to draw even one majority Latino CVAP district. Filling this

analytical void, we compute alternative measures of minority electoral success: the expected share

of council seats held by Latinos; the probability of electing at least one Latino to council; and the

probability of Latinos holding the council majority. Which measure a minority voting bloc will

seek to maximize depends on the goals it hopes to achieve with descriptive representation, on its

level of risk-aversion, and on the political dynamics on councils. However, contrary to intuitions

from the partisan districting literature, we do not find systematic trade-offs in optimizing for these

different metrics. While some plans are better at maximizing some metrics than others, rarely are

any of the various goals in direct tension with one another.

Second, we find that maps which increase the concentration of Latinos within districts tend to

increase all four measures of electoral success. In contrast to the partisan context, where “packing”

may decrease a party’s expected seat share, concentrated districts are necessary for the electoral

success of Latino minorities. What is more, we find no evidence that concentrating Latino voters

in districts has downstream effects on partisan advantage. In particular, because Latinos tend
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to support the Democratic party (Barreto and Segura 2014), some may worry that concentrating

Latino voters in a few districts will disadvantage Democrats across the other districts, sacrificing

substantive representation for descriptive representation (Brace, Grofman and Handley 1987; Lublin

1997). We do not find this to be the case. Rather, across risk-neutral, risk-averse, and substantive

representation goals, maximizing the concentration of Latino voters is often the simplest and most

effective strategy.

Our third finding sheds light on why concentrating Latino voters promotes descriptive repre-

sentation. Analyzing the relationship between the size of a district’s Latino voting population and

that district’s probability of electing a Latino city councilmember across all simulated plans and

all cities, we document an important pattern: a convexity in the function that summarizes this

relationship when Latinos are less than one-half of the voting population. This implies that two

districts with extreme values of Latino CVAP — for instance, 5% and 45% — yield a higher ex-

pected Latino council share than two districts with intermediate values — for instance, 25% Latino

CVAP each. In other words, concentrated plans work due to a nonlinear strength in numbers effect:

the gains incurred from adding Latino voters to a 25% Latino district generally outweigh the losses

from taking Latino voters away from the same district. Importantly, the same pattern does not

hold for white voters, who benefit from being spread out across districts as long as they are more

than approximately one-third of the voting population.

In practice, the cities that adopted districts under the CVRA generally chose more concentrated

plans from their sets of feasible options, and these plans were usually favorable for the electoral

success of Latino candidates. But this underscores our fourth and final contribution: that the

reform of district elections on its own is a poorly defined treatment, with potentially noisy and

inconsistent effects on downstream political outcomes. Only when it is paired with concrete plans

that concentrate Latino voters should we expect to see substantial gains in Latino descriptive

representation. This finding has important implications for scholarship, jurisprudence, and policy.

Notably, in the recent Supreme Court case of Allen v. Milligan, the state of Alabama defended its

congressional districting map, which stood accused of diluting the influence of Black voters, on the

basis that it was in line with the “average” race-neutral plan that is feasible in Alabama. As the

Supreme Court majority affirmed — and we empirically show — the “average” feasible plan is not

a sufficiently strong policy lever to remedy racial inequalities in representation; the most effective
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plans are often unusual in how they aggregate minority votes. We conclude with a brief discussion

of the practical and normative implications of this insight.

Theory and Literature

As of 2012, approximately 64 percent of American municipalities relied on at-large voting for their

city council elections, whereas 14 percent used district elections, with the remaining 22 percent

utilizing some form of hybrid systems (Clark and Krebs 2012). This city-level variation largely

stems from the early 20th century, when municipal reformers sought to counter the influence of

machine-style politics via at-large systems (Trounstine 2009). Reformers believed that at-large

elections would produce council members responsive to the city as a whole, not the patronage

politics of their own district.

In reality, the constituency of the at-large legislator is rarely the city as a whole. Elected

officials are most responsive to those who participate, generally meaning wealthier, more highly

educated white voters; low turnout in local elections exacerbates this participation gap (Hajnal

and Trounstine 2005). So long as an at-large city maintains a majority white turnout with racially

polarized voting, a white coalition can secure an all-white city council. By contrast, cities that can

draw districts where the underrepresented minority constitutes a local majority can theoretically

create the opportunity for the minority voting bloc to elect its preferred candidate.

How district elections increase minority representation at the local level has been theorized, but

not critically assessed. Under the federal Voting Rights Act (VRA), the conditions under which

an at-large system may be held legally responsible for minority vote dilution are succinctly stated

by the Gingles test. To prove that district elections would likely increase minority representation,

plaintiffs must show that the relevant racial or language minority group is “sufficiently large and

geographically compact to constitute a majority in a single-member district”; that this group is

“politically cohesive”; and that the majority usually votes as a bloc to defeat the minority’s preferred

candidates (Thornburg v. Gingles, 478 U.S. 30, 53 n. 21 (1986)). Absent these conditions, we should

not expect the implementation of district elections to improve descriptive representation.

Empirical evidence supporting this theory at the local level has generally come from across-city

analyses showing that the effects of district elections are greater in cities with large minority pop-
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ulations and high levels of racial segregation (Abott and Magazinnik 2020; Collingwood and Long

2019; Dancygier 2014; Hankinson and Magazinnik 2023; Trounstine and Valdini 2008). But findings

from these studies, particularly the moderating effect of segregation, have been noisy, inconsistent,

and undertheorized. For instance, the same segregation that creates the conditions for advanta-

geous maps may just as easily facilitate maps disadvantaging minority voters via cracking and

packing. Understanding the effect of “districting well” versus districting alone requires evaluating

the performance of various plans compared to counterfactual plans that are also available within the

same city. To our knowledge, no such analysis has been done to date. Consequently, in addition to

lacking a complete understanding of the mechanism by which districts improve minority descriptive

representation, the existing literature cannot speak to whether city councils have overperformed or

underperformed expectations in their use of district elections to advance this goal.

Background: Legislative Districting and the CVRA

To unpack how district elections shape descriptive representation, we leverage the implementation

of the California Voting Rights Act (CVRA). Passed in 2001, the CVRA was designed to increase

the representation of Latino voters. As applied to local contests, the law made it easier for plain-

tiffs to challenge at-large elections for disadvantaging Latino electorates. Specifically, the CVRA

lowered the bar set by the federal Gingles test, requiring only that plaintiffs show evidence of

“racially polarized voting.” As a consequence, the law has brought district elections to over 150

city councils, creating wide variation in the levels of segregation, demographic composition, and

political geography among adopters.

The CVRA presents a unique opportunity for opening the black box of how city council maps

increase minority representation. First, whereas the Gingles test requires that a city be able to

draw at least one majority-minority district in order for a court to compel that city to switch

to district elections, the CVRA directly relaxes this standard, allowing us to observe the effect

of district elections under a wide range of conditions — not just those that are in theory most

favorable to minority candidates. Second, the CVRA presents the rare case of districting, not

re-districting. While redistricting often works around preexisting boundaries and is exceptionally

sensitive to protecting incumbents (Henderson, Hamel and Goldzimer 2018), district boundaries in
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our cities were being drawn from a blank slate. Although incumbent protection certainly may have

been taken into consideration, this factor is much more muted when there is no preexisting plan:

drawing new plans that protect at-large incumbents is a difficult problem, and one with which

California’s city councils had little experience.

The process for selecting maps begins with the decision of a city council to switch from at-large

to district elections. While many cities appear to switch voluntarily, the threat posed by the CVRA

always looms in the background. Every city that has challenged a CVRA claimant in court has

lost, with some racking up millions of dollars in legal fees (Schuk 2015). Even receiving a threat

letter from a civil rights law firm has serious consequences: not only does it require the city to

reimburse the firm for approximately $30,000 in research costs, but it starts a countdown requiring

fast action to remedy the situation. In contrast, cities that take action prior to any outside legal

action can take their time to gather public input and select maps while keeping up with traditional

council business. Thus, municipalities that see themselves as targets for litigation may prefer to

act early and voluntarily.

Having decided to switch, city councils begin the mapmaking process. In contrast to the highly

resourced, sophisticated nature of state and federal mapmaking, districting under the CVRA has

been less technical — suggesting that there is much to learn by applying cutting-edge methodologies.

First, the city council hires a demographer to both advise the council in the design of their maps

and facilitate the ability of community members to submit their own suggestions. The demographer

may also work with a “citizens’ committee” designed to collate public input into a single map to

recommend to the city council. Eventually, the city council votes directly on a map.

City councils face both internal and external constraints on the range of maps that they can

feasibly draw. Internally, a city is limited by both its shape and electoral geography (e.g., Chen

and Rodden 2013). For example, a city with a small minority population or a minority population

that is fully integrated with the majority may be unable to draw a district with a majority-minority

CVAP. Externally, the map must comport with federal standards, or risk litigation under the federal

VRA: it should be roughly equal in population, relatively compact, and contiguous, with every effort

made to keep “communities of interest” together. These external constraints may interact with the

internal constraints. For example, a city with an irregular shape may find itself structurally unable

to divide certain communities between districts while satisfying the contiguity, compactness, or
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equal-population requirements, even if so doing would achieve a “fairer” map.

Defining Latino Success: Evidence from Anaheim

The challenge of optimizing representation can be seen in the mapmaking process of Anaheim, a

midsize city of approximately 350,000 people located outside of Los Angeles. With 50% of the

population and 38% of the citizen voting-age population identifying as Latino, Anaheim was an

ideal target for CVRA litigation. Indeed, the city decided to adopt district elections in response

to a 2014 lawsuit filed by the ACLU. To aid in the transition, Anaheim’s city council formed a

citizens’ committee led by five retired judges. The committee would combine public input with a

legal understanding of the CVRA to propose a community-supported district map. The map would

then be voted on by the city council.

But the unexpected debate that erupted around the committee’s map highlights the challenges

of defining Latino electoral success and the dearth of tools for evaluating districting plans. Dubbed

“The People’s Map,” the committee’s map created six districts, consisting of one majority Latino

CVAP district and two other districts where Latinos were a sizeable minority of around 45%

(Elmahrek 2015) — a level that has been found sufficient for Black voters to achieve substantive

representation in Congress (Cameron, Epstein and O’Halloran 1996). Yet despite a groundswell

of public support, the Anaheim city council voted 3-2 against the People’s Map. Leading the

opposition, Councilmember Jordan Brandman expressed concern that the map failed to maximize

Latino representation, possibly exposing the city to future CVRA litigation. Brandman favored an

alternative map that created two majority Latino CVAP districts.

The meeting ended with the final decision being tabled until the new census data would become

available two months later (Elmahrek 2015). Ultimately, advocates of the People’s Map threatened

to protest one of Anaheim’s largest annual conventions, spurring the city council to adopt their

map (Elmahrek 2016). However, just prior to adoption, there was additional hesitation. The new

census data showed that the map’s lone majority Latino CVAP district was no longer majority

Latino, dropping to 49% Latino CVAP (Diamond 2016). The city’s demographer assured the

council that the 5-year American Community Survey’s margin of error meant that this was not

likely to reflect a significant change to the underlying electoral geography, but the public’s focus

on this dip highlighted the importance of the 50% CVAP threshold to many stakeholders.
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Anaheim’s debate raises meaningful questions about how best to increase descriptive repre-

sentation. First, which approach would maximize Latino electoral success: concentrating Latino

voters into two majority-minority districts like Brandman’s map, or the more diffuse approach of

the People’s Map? And if Brandman’s map were more effective, would even higher concentrations

of Latino voters be more successful in securing seats, or would further packing eventually yield

negative returns? Furthermore, was 50% Latino CVAP a meaningful threshold, raising legitimate

concerns about the new census data, or folk wisdom that does not reflect on-the-ground voting

behavior?

Second, missing from the Anaheim debate was another consideration: what was the risk tol-

erance of the Latino community? Reliance on the 50% CVAP threshold not only assumes equal

turnout and candidate entry across groups, but also approaches these outcomes without accounting

for uncertainty. But variation over time generates swings, such that even a seemingly safe district

may occasionally elect the candidate opposed by the typical majority voting bloc. If Latino voters

are spread across districts with narrow majorities, there may be cycles where no Latinos are elected

to city council. For a risk-averse voting bloc, the loss of all representation may be far worse than

failing to fully maximize expected seat share, as the mere presence of a minority member has been

found to play a pivotal role in agenda-setting in legislatures (Bratton and Haynie 1999; Canon

1999). Thus, Brandman’s safer map may have been more attractive to a risk-averse population

prioritizing a floor of representation rather than maximizing average representation over election

cycles.

Data and Methodology

To address these questions, we obtained as many city council district shapefiles as we could find

for the California cities that have converted to district elections under the CVRA. Through a

combination of searching online and contacting city government offices by phone, we ultimately

obtained 106 shapefiles, covering 69% of the 153 cities that we have documented as having switched

or committed to switching to district elections in the wake of the CVRA. We then overlaid these

shapefiles on a Census block-level shapefile from 2017,1 which allowed us to associate each block with

1Obtained from: https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2017&layergroup=

Blocks+%282010%29.
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a city council district as well as a set of economic, political, and demographic indicators obtained

from the U.S. Census and the California Statewide Database.2 The resulting standardized and

enhanced shapefiles constituted the inputs into our districting simulations.3

Additionally, we used several city-level data sources in our analysis. We obtained city council

election returns from de Benedictis-Kessner and Bernhard (2022), who built upon data collected

by the California Elections Data Archive (CEDA).4 To measure residential segregation of Latino

voters, we computed the dissimilarity index (Duncan and Duncan 1955) between the Latino and

non-Latino citizen voting-age population,5 given by:

D =
1

2

T∑
t=1

∣∣∣∣ ltL − nt

N

∣∣∣∣ (1)

where t indexes Census tracts within the city, l and n are the sizes of the Latino and non-Latino

citizen voting-age populations in tract t, respectively, L is the total Latino CVAP in the city, and

N is the total non-Latino CVAP in the city. We obtained all other relevant city-level economic and

demographic indicators from the Census.

Districting Simulations

A central interest of this project is how cities exercise political control over the favorability of

electoral maps toward minority groups. We have argued that decisionmakers are constrained by

two forces: physical and residential geography, and federally mandated standards. In order to

understand the universe of choices available to decisionmakers given these constraints — and thus

to see how favorable their chosen maps were within this feasible universe — we conduct a set of

redistricting simulations.

We use the automated redistricting simulator developed by Fifield et al. (2020),6 which uses a

Sequential Monte Carlo algorithm to characterize the distribution of feasible districting plans under

the contiguity, compactness, and population parity constraints. We apply this algorithm to each of

2https://statewidedatabase.org/.
3For more details on the data construction process, please see Appendix A.
4Available at: https://csu-csus.esploro.exlibrisgroup.com/esploro/outputs/dataset/California-

Elections-Data-Archive-CEDA/99257830890201671?institution=01CALS_USL.
5Measured three years prior to the year of the first district election. See Appendix A for a justification of this

choice.
6Implemented by the R package redist (Kenny et al. 2021).
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the 106 shapefiles that we prepared, producing for each city a set of counterfactual maps that one

just as easily could have drawn, and that would also have had roughly contiguous, compact, and

equal-population districts. We fix the number of districts in the simulations to be the number of

districts in the adopted plan.7 We generate 40,000 draws from the target distribution of districting

plans, where a draw is an assignment of Census blocks to city council districts. This allows us to

compare realized electoral outcomes for the minority and majority groups under the adopted maps

to the distribution of expected outcomes under the feasible alternatives. For a detailed discussion

of the algorithm, the parameter values that we use, and diagnostics, please see Appendix B.

Post-Districting Analysis

Using these sets of maps within each city, we calculate how the maps varied in our electoral outcomes

of interest and whether trade-offs exist in the pursuit of one strategy over another. We begin by

walking the reader through the example of Anaheim to illustrate the constraints on the ground, and

how the algorithm incorporates these considerations. We then formalize our measures of Latino

electoral success as well as concentration for a given districting plan. From there, we extend our

analysis to the remaining cities in our sample.

The Constraints of Geography

Recall Anaheim’s debate over how to draw district lines. In a sense, that a debate was possible at

all was due to Anaheim’s sizeable Latino population. With 38% of the citizen voting-age population

identifying as Latino, the city had a meaningful choice between pursuing multiple electoral strate-

gies. By the same token, the city’s geography creates certain limitations. Simple visual examination

of a map of Anaheim reveals how both physical and political geography shape and constrain the

electoral maps that can be drawn (Figure 1).

Physically, the relatively sparsely populated area on the east side of the city, the Anaheim Hills

— home to the city’s parks, nature reserves, a golf course, and expensive homes overlooking the city

— forms a natural district (District 6) under the compactness, contiguity, and equal population

constraints. Indeed, not only is this a district under the adopted map, but some small variation on

7While the number — and therefore size — of districts affects the relationship between minority segregation and
representation (Rodden 2019), our cities did not generally alter their council size when adopting district elections.
Thus, we limit the range of feasible plans to only those with the same number of council seats as the adopted plan.
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District 6 is also a district under the overwhelming majority of simulated maps. The same is true to

some extent on the western side of the city, which also has a narrow peninsula that will naturally

constitute a district under most maps (District 1). Politically, Figure 1 shows that Anaheim’s

Latino population is concentrated in the urban center, whereas white residents tend to live in the

less densely populated areas to the west, east, and south. Thus, white voters will constitute the

majority in any perturbation of the “naturally occuring” Districts 1 and 6.

By contrast, the four districts at the center of the city leave a lot of freedom, and account for the

lion’s share of the variation in whites’ and Latinos’ relative political advantage. Panel (a) shows the

People’s Map, with one (nearly) majority-minority Latino district and two sizeable Latino minority

districts. Panel (b) shows a simulated map that maximizes the number of Latino majority districts

— one akin to the map proposed by Councilmember Brandman. By and large, Districts 1 and

6 are unchanged between the maps, with the main difference being that the “concentrated” map

below pulls Latino voters from District 4 to elevate the Latino vote shares in Districts 3 and 5.

Along with visualizing the range of possibilities for each city, our approach allows us to see

where the adopted map falls in this range. The left panel of Figure 2 shows the distribution of

Latino proportion of CVAP in each district.8 Here, we see once more the inescapable fact that

Districts 1 and 6 can only be majority white, whereas Districts 2 through 5 are where the crucial

choices happen. Furthermore, we see from the panel on the right that Anaheim’s adopted map

(the People’s Map) is on the low end of the distribution of Latino-majority seats across feasible

alternatives in Anaheim: whereas it creates zero Latino-majority districts, the modal feasible plan

would have created one out of six, and a handful of outliers would have created two out of six.

Definitions of Electoral Success

To judge how well a district map improves Latino representation requires defining a measure of

electoral success. Like the federal VRA, conversations surrounding the CVRA have focused on

the creation of majority Latino CVAP districts, and for good reason. Not only is the 50% Latino

CVAP threshold intuitive to the average citizen attending public meetings and offering input on

proposed maps, but it is the simplest measure of empowering a voting bloc. By composing 50%

8Simulated districts are numbered in such a way as to maximize overlap and comparability with the adopted
map.
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Figure 1: Anaheim Example

(a) Map 1: “The People’s Map”

(b) Map 2: Alternative map that maximizes Latino-majority districts

Latino Proportion of Voting Population
0.0 to 0.2
0.2 to 0.4
0.4 to 0.6
0.6 to 0.8
0.8 to 1.0
Missing

District
1
2
3
4
5
6

Latino % CVAP
District Map 1 Map 2

1 0.30 0.29
2 0.33 0.33
3 0.49 0.51
4 0.45 0.39
5 0.45 0.51
6 0.16 0.15
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Figure 2: Simulation Distributions of Council Seats with Latino CVAP Majorities, City of Anaheim
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the 40,000 simulations. Red line corresponds to the value for the adopted map.

of the citizen voting-age population, Latinos (or any group) can theoretically elect their preferred

candidate — regardless of the candidate’s ethnicity.

While the 50% CVAP threshold is useful as a measure of political strength that is agnostic to

the preferences of the Latino voting bloc, it is important to remember that the CVRA was born

partially from the observable lack of descriptive representation in California local government. Thus,

we aim to provide some additional measures of the reform’s success that are related to the expected

ethnic composition of councils under alternative maps. However, the local context introduces an

obstacle rarely encountered in federal districting: election returns are usually only available at the

(true) district level, rather than lower-level units such as precincts that can be aggregated to other

(hypothetical) districts.

Our solution is to predict electoral outcomes under hypothetical districts using a model trained

on real-world election data. We begin with the CEDA dataset of electoral outcomes measured at

the district-city-year level for our 106 cities (post-districting). We use this dataset to model the

probability that district i in city c in election year t elects a Latino candidate as a function of

CVAP, partisanship, and other characteristics of the district, which are computed by aggregating
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up from the Census block level to the adopted districting plan. Then, for each simulated district,

we compute the same covariates and use them to calculate the predicted probability of electing a

Latino candidate.

Because our conclusions about Latino electoral success under alternative districting schemes

rely on predictions generated by this model, its validity and predictive power are of the utmost

importance for our findings to hold water. Fortunately, a sizeable literature has been devoted to the

problem of predicting minority descriptive representation using district characteristics, with notable

recent developments by Atsusaka (2021) and Fraga, Gonzalez Juenke and Shah (2020). After

testing a variety of approaches, we select a relatively parsimonious logistic regression specification

that performs well out of sample, correctly classifying 81% of the cases. In Appendix C, we report

the estimated coefficients from this model and the results of other tests of the model’s performance.

We then use the district-level predictions generated by our model, which we call p̂cdt = ̂Pr(Latino elected)cdt,

to build three useful citywide predictions for each districting plan:

1. Expected Latino council share: This is computed as the average of p̂d across all districts,

and represents the share of the city council that we would expect to be Latino over many

elections.9

2. Probability of at least one Latino on council: This is computed as the complement of

the probability of electing zero Latinos, which is the product of the complements of p̂d across

districts.

3. Probability of a Latino council majority: This is computed as the sum of the proba-

bilities of each configuration of election outcomes that generates a Latino council majority.

For example, in a city with three districts, a Latino council majority will occur under the fol-

lowing conditions: Districts A and B elect Latinos, Districts B and C elect Latinos, Districts

A and C elect Latinos, or all three districts elect Latinos. To compute the probability that

Districts A and B elect Latinos, we multiply p̂A ∗ p̂B ∗ (1− p̂C); the other configurations are

computed analogously. Then, we sum the probabilities of each configuration to calculate the

overall probability of a Latino council majority.

9We now suppress the c and t subscripts when we are focused on a particular plan within a city. The time t is
held fixed at the first year of district elections in that city.
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Each of these alternatives captures a different strategy for securing some form of descriptive

representation. Several considerations inform which measure reformers will prioritize. The first is

risk tolerance. Maximizing the first quantity is a risk-neutral strategy, since the same expected

council share can be achieved by one certain Latino district and one certain white district, or by

two 50% probability Latino districts. And while taking this approach will maximize representation

in the long run, in any given election cycle there may be a real danger of ending up with no

representation. Given evidence that the presence of just one minority member can affect the

agenda, a risk-averse voting bloc may favor plans that maximize the second quantity. Finally, for

cities with sufficiently large Latino populations, the city council majority may be within reach. But

maximizing this quantity may be risky if having a fighting chance in a majority of districts requires

stretching the population too thin to make any safe districts.

A second consideration is what reformers hope to achieve through descriptive representation.

When it comes to representing voters’ interests in council votes, the Latino bloc is well served by

having a council share in proportion to, or better yet in excess of, its population share. On the

other hand, even one voice may suffice to bring new concerns and perspectives to the table, to

set the agenda, or to have an impact on the behavior and opinions of other councilmembers —

especially in a small and collegial legislative body.

Finally, council dynamics also play an important role. At one extreme, city councils may

resemble the national legislature, where opposing factions battle to win majorities or otherwise

fail to enact their governing agendas. But, at the other extreme, councils may be cooperative and

deliberative; they may have a formal or informal norm of unanimity, or grant their members specific

veto powers. While in the former case, the minority should seek to maximize its numbers — and

pursue council majorities whenever they are within reach — in the latter case guaranteeing one

seat is vital, whereas pushing beyond that may be inefficient.

Concentrating Latino Voters

Aside from their expected electoral outcomes, we can also characterize districting plans with respect

to how they distribute Latino voters. A common concern in the partisan districting literature is the

concentration of one party in a way that wastes votes, a strategy known as “packing.” This term is

typically used to describe maps where concentrating a group diminishes its electoral influence (e.g.,
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Best et al. 2018). In this sense, packing implies disadvantage. But we want to know whether the

approach of concentrating Latino voters is effective in increasing their descriptive representation.

Thus, we do not use the term “packing,” though it may be common parlance.

We measure the concentration of Latino voters that is associated with each plan using the

dissimilarity index of districts under that plan. In other words, we apply the same calculation as in

Equation 1, this time with council districts rather than Census tracts as the lower-level geography.

By calculating this index for every simulated districting plan, we can see how plans vary in their

concentration of Latino voters, holding fixed the city’s underlying residential segregation; we use

the term “concentrating” rather than “segregating” to distinguish how maps are drawn from the

baseline residential segregation in the city. To enable comparisons between Latino and white

voters, we compute two versions of the dissimilarity index for each electoral outcome in each city:

for Latinos, we compute the index for Latinos versus all others; and for whites, we compute the

index for non-Hispanic whites versus all others.10

Results

Most Cities Could Not Draw Even One Latino-Majority District

As we have argued, our simulation exercise is important for assessing district elections on the basis

of not just one adopted plan, but the potential of what they can achieve under the geographic and

legal constraints on the ground. In Appendix Figures D-2 through D-6, we plot the ranges of various

outcomes of interest over the simulation distributions for each city, as well as the percentile of those

distributions where the adopted plan falls. These outcomes of interest include the proportion of

council seats with a Latino CVAP majority (Figure D-2), the expected Latino council share (Figure

D-3), the probability of at least one Latino on council (Figure D-4), the probability of a Latino

council majority (Figure D-5), and the dissimilarity index of plans (Figure D-6).

Strikingly, Figure D-2 shows that 58% of the cities in our sample cannot draw a single district

with greater than 50% Latino CVAP, as evidenced by the fact that not one of the city’s 40,000

simulated plans contains even one such district. This happens for two reasons: the Latino popu-

lation in the city is not large enough and not residentially segregated enough to constitute a local

10Figure A-1 builds intuition around how the dissimilarity index summarizes the concentration of a voting bloc.
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majority under any feasible configuration. Furthermore, an additional three cities cannot draw a

district without a majority Latino CVAP. For these cities, there is no variation in simulated plans

based on this simple outcome.

However, we do see that cities that had the option of creating Latino-majority districts not

only did so, but generally maximized the number they could feasibly draw. Of the 41 cities with

variation on this outcome in their simulation distributions, 33 (80%) created plans that landed above

the 90th percentile. In other words, the CVRA effectively communicated its priority of drawing

Latino-majority districts where possible, and compliance with this goal was generally high.

No Systematic Trade-offs Across Measures of Success

Although many cities could not draw Latino-majority districts, we can imagine that the choice of

maps is still meaningful for Latino representation in these places. Thus we now turn to our three

additional measures of Latino descriptive representation: the expected Latino council share, the

probability of at least one Latino on council, and the probability of a Latino council majority. We

calculate each measure of electoral success for each of the 40,000 maps within all 106 cities.

A natural first question to ask is whether there are trade-offs in optimizing for these different

goals. To see this, we calculate the correlation between each possible pair of measures within each

city. We begin by looking at how the share of seats with a majority Latino CVAP correlates with

our three measures of Latino electoral success. Figure 3 presents three histograms — one for each

set of within-city correlations — with a red vertical line showing the average correlation across all

cities. Only the 41 cities that had some variation in their simulation distributions of majority Latino

CVAP districts are included here. Within this subset, maps that increase the number of majority

Latino CVAP districts also tend to improve performance on all three measures of electoral success.

Indeed, negative correlations in this column are highly conditional. For instance, we find that a

trade-off between maximizing the share of majority Latino CVAP districts and the probability of a

Latino council majority only occurs in cities with very large and segregated Latino populations.11

11Consider the city of Indio. The plan that maximizes the share of majority Latino CVAP districts has the
following Latino CVAP share for Districts 1 through 5: 0.58, 0.50, 0.53, 0.57, and 0.61. The plan that maximizes the
probability of a Latino council majority has the following Latino CVAP share for districts 1 through 5: 0.32, 0.41,
0.86, 0.64, and 0.77. When Latinos constitute the majority of the voting population citywide, and when they are
sufficiently segregated, then it is possible to concentrate Latino voters in three out of five districts, yielding a higher
probability of a Latino council majority than a plan that gives Latinos a bare CVAP majority in every district.
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In Appendix Figure E-7, we also present correlations between every pair of predicted electoral

outcomes: the expected Latino council share with the probability of at least one Latino on coun-

cil; the expected Latino council share with the probability of a Latino council majority; and the

probability of at least one Latino on council with the probability of a Latino council majority.

These histograms include all cities, because every city has variation in these probabilities, even

those unable to create majority Latino CVAP districts. And here, we see correlations that are

overwhelmingly positive and close to 1. The same kinds of maps achieve all three goals.

Concentrating Latino Voters Improves Descriptive Representation

Given that there are no consistent trade-offs among these electoral outcomes, are there simple

principles for simultaneously maximizing all four? We find that plans that concentrate Latinos —

in other words, that create some districts with large numbers of Latino voters while necessarily

leaving other districts with few — are more effective at achieving every electoral goal than plans

that distribute Latino voters more evenly across districts, as long as Latinos are under half of the

voting population citywide. This condition holds for the vast majority of cities in our sample. The

same is not true for whites: plans that concentrate white voters are only electorally successful

when the citywide white voting population is below one-third — a small number of the cities in

our sample. For most cities, plans that spread out white voters across districts maximize electoral

success for white candidates.

To evaluate how concentrating Latino voters relates to descriptive representation, we compute

the correlation between the simulated plans’ dissimilarity index for Latinos and each of our four

electoral outcomes of interest across all simulations within each city. This gives us four correlation

coefficients per city, which we plot against citywide Latino CVAP in Figure 4 (in black). We also

do the same for whites, and show these correlations on the same graphs (in gray). The histograms

at top and bottom show the distributions of the proportion of citywide CVAP that is Latino (in

black, above) and that is white (in gray, below) within our study sample.

We begin with the correlation between the dissimilarity index of plans for Latinos (whites) versus

all others, and the proportion of council seats that have a Latino (white) CVAP majority. In panel

(a), we see positive correlations when Latinos are a citywide minority, and negative correlations

when they are a citywide majority; an identical pattern holds for whites. For both groups, the
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Figure 3: Correlations Between Share of Seats with Majority Latino CVAP and Latino Electoral
Advantage
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positive correlation is strongest when they are just shy of half of the citywide voting population,

while the negative correlation is strongest when they are just above this threshold. This makes sense:

when a group is in the minority, but substantial enough to create majorities in some districts, then

concentrated plans will maximize the number of majority-minority districts. On the other hand,

when a group has a bare citywide majority, then plans that spread this population out to achieve

bare majorities in as many districts as possible will be the most efficient strategy.

From panel (a) alone, we would conclude that the takeaways for white voters are the same as

for Latinos.12 But panels (b) through (d) suggest otherwise. In panel (b), we see that concentrated

maps tend to increase expected Latino council share for most cities where Latinos are up to 50%

of the overall population. There are even a few cities just over the 50% threshold that still see

positive, albeit reduced, correlations. Thus, even when Latinos are a sizeable voting bloc, the

logic of panel (a) does not translate into electoral victories. Because of lower turnout, resources,

and mobilization within this group, spreading the city’s Latino population into a larger number

of districts achieves worse descriptive representation than concentrating it in fewer districts where

they have the critical mass to make a difference.

The opposite is true for white voters and candidates. Due to systematic advantages in voter

turnout, political networks and resources, and incumbency, white voters have outsized influence

on their district’s electoral outcomes, while white candidates (collectively) have a high baseline

probability of being elected. As a result, panel (b) shows that once whites surpass approximately

one-third of the citywide voting population, their descriptive representation is maximized when

they are spread out across districts; they stand a good chance of achieving electoral victories even

with such minorities.

In panel (c), we also see that concentrating Latinos nearly always helps secure at least one Latino

seat on city council, regardless of the citywide Latino CVAP. The same is true for whites when

they are a citywide minority, but the correlation begins to fall earlier than for Latinos — again,

when they are around one-third of citywide CVAP. Finally, panel (d) shows that concentrating

Latinos almost always increases the probability of securing a Latino council majority, whereas

there is a negative relationship for whites in most cities. Taken together, our findings reveal an

12The curves diverge to the right of 0.6 proportion CVAP citywide, but this is merely an artifact of the fact that
there are no cities where Latinos are more than 60% of citywide CVAP that also have variation on this electoral
outcome (and thus where a correlation can be computed).
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Figure 4: Correlations, Dissimilarity Index of Plans and Measures of Electoral Advantage — by
Citywide Voting-Age Population

0

5

10

0.00 0.25 0.50 0.75 1.00
Proportion CVAP citywide, Latino

C
ou

nt

Latino
White

−1.0

−0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00
Proportion CVAP citywide

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

(a) Share of seats w/majority [group] CVAP

0

5

10

0.00 0.25 0.50 0.75 1.00
Proportion CVAP citywide, Latino

C
ou

nt

Latino
White

−1.0

−0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00
Proportion CVAP citywide

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

(b) Expected [group] council share

Latino
White

−1.0

−0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00
Proportion CVAP citywide

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

0

5

10

0.00 0.25 0.50 0.75 1.00
Proportion CVAP citywide, white

C
ou

nt

(c) Pr(at least 1 [group] councilmember)

Latino
White

−1.0

−0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00
Proportion CVAP citywide

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

0

5

10

0.00 0.25 0.50 0.75 1.00
Proportion CVAP citywide, white

C
ou

nt

(d) Pr([group] council majority)

Notes: “Group” in brackets represents Latinos for black points and whites for gray points. Loess-smoothed curves
fitted to each set of points are shown in the associated color. “Correlation coefficient” on y-axis represents the corre-
lation between the dissimilarity index of plans for Latinos (black points) or whites (gray points) and the subcaption
for each panel; for instance, the black points in panel (a) represent correlations between the concentration of Latinos
in a city’s plans and the share of seats with majority Latino CVAP produced by those plans, across all simulated
plans for that city. Panel (a) has fewer observations, as some cities have no variation on this electoral outcome across
simulated plans.
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important insight: whereas whites and Latinos exhibit the same patterns in the technical exercise

of drawing majority districts (panel a), they differ substantially in how the distributions of voters

across districts map onto electoral outcomes.

Why Concentrating Latino Voters Works

Concentrating Latino voters generally improves this group’s descriptive representation on city coun-

cils, so long as Latinos do not comprise the overwhelming majority of the citywide voting popula-

tion. To understand why this is the case for Latinos but not white voters, we investigate how a

district’s racial composition relates to its propensity to elect white and Latino city councilmembers.

In Figure 5, we plot the relationship between the proportion of a district’s eligible voters who are

Latino and that district’s predicted probability of electing a Latino councilmember (black curve), as

well as the same relationship for white voters and councilmembers (gray curve), over all simulated

plans for every city in our sample.13 Figure 5 immediately reveals that for the same district-level

voting population share, whites are systematically more likely than Latinos to elect coethnic city

councilmembers. The probability of electing a Latino councilmember crosses the 50% threshold

when Latinos comprise 50% of the district’s voting population, whereas the probability of electing

a white councilmember is already greater than one-half when the white voting population is just

over one-third.14

A second important feature of Figure 5 is the convexity of the curve for Latinos in the critical

region between 0 and 50% of district CVAP — the region within which the vast majority of feasible

districts fall.15 Convexity implies that the expected Latino council share will always be higher

from two districts with extreme values of Latino CVAP than two districts each having the mean

of those values.16 For instance, having one district with 45% Latino CVAP and another with 5%

yields a higher expected Latino council share than two districts with 25% Latino CVAP. Then, in

13These predicted probabilities are the same ones that we introduced in the section titled “Definitions of Electoral
Success” and used throughout the analysis in Figures 3–4.

14Because we estimate the predicted probabilities of electing whites and Latinos using separate binary response
models, it is possible for a 30% white district to have a probability of electing a white councilmember above 0.5 at the
same time that a 70% Latino district has a probability of electing a Latino councilmember above 0.5. The 30% white
district in this analysis averages over all possible (real and simulated) racial compositions of the remaining 70%, and
similarly for the 70% Latino district; thus, the two sets of probabilities computed here are not complementary and
need not sum to at most one.

15The interquartile range of simulated districts is 16% to 39% Latino CVAP.
16To see this, consider any two districts that have Latino proportions of CVAP of x1 and x2, respectively, and let

f(x) be the convex function that takes Latino proportion of CVAP to probability of electing a Latino councilmember.
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Figure 5: Probability of Electing a Coethnic Councilmember in a District as a Function of CVAP,
Latino vs. White
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Notes: This figure plots the proportion of a district’s eligible voters who belong to a particular group on the x-axis,
and the probability that a member of that group is elected to council on the y-axis, over all simulated districts for all
cities in our sample. The black curve summarizes this relationship for Latinos and the gray curve summarizes this
relationship for whites. Curves are constructed by computing binned means of the probability of electing a coethnic
councilmember at 0.01-unit intervals along the x-axis, then fitting a Loess-smoothed curve to these means. Histogram
at top shows the distribution of the x-axis for whites over all simulated districts; histogram at bottom shows this
distribution for Latinos.
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the region above 50% Latino CVAP, the curve becomes slightly concave. Here, districts at any two

extreme values of Latino CVAP yield a lower expected Latino council share than two districts at

the mean of those values; for instance, two districts with 75% Latino CVAP are somewhat more

favorable in expectation than one district with 50% and the other with 100%.

This finding is particularly important in light of the fact that the majority of cities in our sample

could not create even one Latino-majority district. Nonetheless, our analysis highlights that these

cities could still make critical choices in promoting Latino descriptive representation through their

districting plans. In particular, Figure 5 suggests that concentrating the Latino voting population

is especially important when Latinos constitute citywide and districtwide minorities; in fact, the

largest marginal gains in the probability of electing a Latino representative are realized between

about one-fourth and one-half of the district’s voting population.

While white voters also exhibit some convexity on the very low end of white district CVAP

share, this convexity is much less pronounced; rather, the overall shape of the gray curve in Figure

5 is concave in the region above one-third of white district CVAP share, where the vast majority

of all feasible districts fall. This underpins the result in Figure 4, panel (b): that white candidates

perform best when white voters are dispersed in this region.

No Systematic Trade-off with Substantive Representation

A final concern is that concentrating Latino voters will hamper the election of Democrats citywide.

Given that Latinos tend to share policy views with and support Democratic candidates (Barreto,

Segura and Woods 2004), especially in California (Hui and Sears 2018), a decline in Democratic

electoral success would entail a meaningful trade-off of descriptive for substantive representation.17

To test for such a trade-off, we calculate the correlation between each of our measures of electoral

success and the share of districts with a Democratic majority of registered voters. Only 44% of

The expected council share from these two districts is:

f(x1) + f(x2)

2

Now consider the expected council share from two districts, each having Latino proportion of CVAP at the mean of
x1 and x2:

f
(
x1+x2

2

)
+ f

(
x1+x2

2

)
2

= f
(x1 + x2

2

)
The first equation must be greater than the second when the function f(x) is convex.

17Though such a trade-off may be less pronounced in light of increasingly durable shifts of the Latino electorate
away from the Democratic Party (Fraga, Velez and West 2022).
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our sample exhibits any variation on the latter outcome; in all, over half of the cities in our sample

lack the necessary variation to compute a correlation. There is no trade-off between promoting

Latino descriptive representation and creating majority Democratic districts in these cities. And

among cities where there is some variation in both outcomes, Figure E-8 shows that there is also

no systematic relationship.

Discussion

Revisiting Anaheim, in some ways Councilmember Brandman was right: indeed, concentrated plans

are associated with Latino electoral success as long as Latinos are not a citywide supermajority.

Across over one hundred cities, we find that not only are multiple measures of minority descrip-

tive representation compatible on average, but they can all be achieved using the same strategy:

creating districts with high concentrations of Latino voters. What is more, promoting descriptive

representation along these dimensions is not generally incompatible with substantive representation,

as measured by Democratic partisan advantage.

Thus, the intense focus of the debate in Anaheim around majority Latino CVAP districts did

not capture the whole picture. When it comes to actually electing Latino representatives, the most

significant marginal gains from concentrating Latino voters accrue in the space between 0 and 50%

Latino CVAP, not in crossing the 50% threshold. In Anaheim’s case, the adopted plan, with three

districts falling just shy of a Latino majority, and a more concentrated plan like Brandman’s, with

two districts just over the Latino majority threshold, produce quite similar Latino council shares in

expectation: 50% and 51%, respectively. These findings are particularly important in light of the

fact that, even in the context of the CVRA, Latino-majority districts are often out of reach. But

we have shown that, even when this is the case, cities nonetheless hold significant power to shape

electoral outcomes through the drawing of districting plans.

To what extent are these insights generalizable to other contexts — to local districting outside

of California, and to congressional districting — and to other minority groups? In other words,

what are the scope conditions under which concentrated plans promote minority descriptive repre-

sentation more broadly? Although the present study lacks the statistical power to speak directly
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to the actual or potential electoral success of other minority groups under the CVRA,18 the answer

to this question lies in the shapes of the curves in Figure 5, which are in turn determined by the

political behavior of the relevant electorate.

One crucial feature is the degree of racial polarization, often operationalized by the extent to

which voter race predicts vote choice. In an electorate with low racial polarization, the curve in

Figure 5 for any group is relatively flat: the racial composition of a district is only associated

with the race of its elected representative insofar as any candidates for office must come from that

district, but not due to any patterns in voter behavior. By contrast, in a highly polarized electorate,

we would see a sharp, discontinuous increase in the probability of electing a coethnic representative

when a group exceeds 50% of CVAP, because majority status is both necessary and sufficient for

this outcome. In contexts of high racial polarization — for instance, there is evidence that Latino

voters are less racially polarized than Black voters (Kuriwaki et al. Forthcoming) — we expect

major returns to minority concentration that mainly accrue in crossing the 50% threshold. With

low racial polarization — for instance, in the presence of coalition voting with white Democrats —

more diffuse maps that draw strength from these coalitions may be most effective.

Another consideration is how political behavior changes with group size, which affects the

curvature — that is, any concavities or convexities — in Figure 5. Notably, Fraga (2018) finds that

the well-documented gap in turnout between white and Latino voters closes when Latinos are in the

electoral majority in their congressional district; the same is also true for Black and Asian voters.

The mobilizing effects of group size may accrue discontinuously over the 50% threshold if voters

are applying a Downsian calculus, or they may grow over other intervals if empowerment theory

(Barreto, Segura and Woods 2004; Barreto 2010) or elite mobilization (Leighley 2001; Rosenstone

and Hansen 1993) are at work. Regardless, an important body of work has produced convincing

evidence that political mobilization is a function of the racial composition of one’s district, and the

specific ways in which this may be true for a given group determine when and how it benefits from

concentrated plans.

Finally, it is useful to note that the context in which CVRA cities drew their districting plans

involved an unusually high degree of interest group and judicial oversight. Moreover, cities were

18The largest non-white voting bloc is Latinos in the majority of California cities that converted to districts, and
modeling the electoral success of Black and Asian candidates in California city council elections is much more difficult
than doing so for Latinos.
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guided by the general principle of creating Latino-majority districts when possible and keeping

“communities of interest” together. As a result, the maps they produced were usually favorable for

Latino descriptive representation given what was feasible under the legal and geographic constraints.

But there is no guarantee that favorable maps would have been drawn absent such pressures. Indeed,

in cities not covered by the CVRA, city councils generally produce maps which do not maximize

racial representation (Novoa N.p.).

What is more, as we show in Appendix Figure D-6, the cities with the widest range of plans

from which to choose are the most segregated cities in our sample. These cities are able to make

both very concentrated and very diffuse plans, whereas cities where Latinos are residentially in-

tegrated generally have lower levels and variances of Latino concentration over their simulation

distributions. This means that the very tool that we have identified for promoting Latino descrip-

tive representation is subject to the greatest political control in segregated cities — which may

also suffer from the most acute racial inequality and conflict. Therefore, we add some important

nuance to previous findings: segregation alone is a poorly defined moderator of the effect of district

elections. That previous studies of the CVRA find segregation to be a positive moderator of the

effect of district elections on minority electoral success reflects contextual incentive structures in

addition to any effects of segregation alone.

Conclusion

Using state-of-the-art redistricting tools, we have expanded the prior understanding of how district

elections increase minority descriptive representation. District elections are not successful solely

when they create majority-minority districts. Were that the case, we would see very little change

in electoral outcomes in most cities that adopted districts under the CVRA, where creating any

majority-Latino districts was impossible. Rather, using real-world election data paired with a

validated predictive model, we show how districting plans can increase the expected Latino council

share, the probability of securing at least one Latino seat on council, and the probability of a Latino

council majority.

Contrary to expectations from the partisan districting literature, we find that these measures of

descriptive representation are generally compatible, and are simultaneously advanced by districting
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plans that concentrate Latino voters. This strategy does not, on average, come at the cost of

substantive representation, as measured by the success of Democratic candidates. Examining the

relationship between a district’s racial composition and its propensity to elect Latino candidates

across the universe of feasible plans in over one hundred California cities, we find that the most

significant marginal gains from concentrating Latino voters are realized below the 50% threshold

— not in creating Latino majorities. While a great deal of scholarly attention and political debate

has focused on creating majority-minority districts, we have provided novel insight into how to

promote minority descriptive representation in the large set of cases when this is impossible.

In short, we have shown how district elections can be maximally effective, but also exposed their

limitations. To advance minority descriptive representation, the overarching institutional structure

must be paired with plans that concentrate the minority voting bloc. This is made possible when

cities are segregated and face political incentives to adopt such plans. But relying on segregation to

set the stage for district elections to be successful is concerning. Segregated cities not only struggle

to provide collective goods, but also have an incentive to direct goods to members of the dominant

coalition (Trounstine 2018). This tendency is likely to be exacerbated under district elections, given

even more clearly spatially-defined constituencies and the history of legislative logrolling. Likewise,

segregation heightens inter-group tensions, both threatening cooperation and potentially spurring

conflict (Enos 2017). That low segregation cities would be penalized in their ability to increase

minority voice through districting should cause us to question the viability of district elections as

panacea for representation. In other words, the Gingles test may have been less a conservative

barrier to reform and more of a guardrail against false hope in unsuitable cities.

More broadly, our findings are more than a mechanical assessment of how cities should draw

district lines. Rather, we have shown how a reform designed to improve minority representation

faces constraints, stemming from both electoral geography and political agency. Understanding

these forces is crucial to realizing the maximum potential of the reform — and tempering expec-

tations of what it can achieve. Building knowledge about how institutional design interacts with

real-world geography and political behavior is not only important for equalizing voice, but vital for

democratic legitimacy. When a reform like districting is guided by improper tools and folk wisdom,

the promise of representation is unlikely to be fulfilled, undermining trust in the institution.
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A Data Construction

Here, we outline the data construction process by which we prepared city shapefiles for districting
simulation. As a baseline, we began with the 2017 TIGER/Line Shapefile for the state of California
at the Census block level.1 We used Census blocks because this seems to be the unit that most
cities used for district assignment. Then, we associated each block with a set of demographic, eco-
nomic, and political variables, described in detail below. Finally, we intersected each of the 106 city
council district shapefiles in our possession with this statewide block-level shapefile. This generated
106 block-level shapefiles — one for each city — mapping Census blocks (with covariates) to city
council districts.

Variables

1. Housing Data. We collected the following variables from the 2010 Decennial Census:

1. CB Variable ID H003002, the total number of housing units in which a person or group of
persons is living at the time of the interview, or if the occupants are only temporarily absent,
as for example, on vacation;

2. CB Variable ID H014002, the total number of housing units where the owner or co-owner
lives in the unit, even if it is mortgaged or not fully paid for.

We computed the homeownership rate as the number of occupied households that are owned
(H014002) divided by the total number of occupied housing units (H003002).

2. Voting-Age Population. We collected block-level total population from the 2010 Decennial
Census (CB Variable ID P001001). In addition, we collected the following variables related to
citizen voting-age population (CVAP) from the Redistricting Database for the State of California
(“Statewide Database”)2:

1. Total citizen voting-age population

2. Black or African American (alone) citizen voting-age population

3. Asian (alone) citizen voting-age population

4. Hispanic or Latino citizen voting-age population

5. Not Hispanic or Latino citizen voting-age population

6. White citizen voting-age population

Because cities districted in different years, we pulled these CVAP estimates from different time
periods for each city. In order to approximate as closely as possible the data cities were working
with at the time that they districted, we selected 5-year estimates ending 3 years prior to the year
of the first election under the newly adopted districting plan. For example, if the year of first

1Obtained from: https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2017&layergroup=

Blocks+%282010%29.
2Accessed at: https://statewidedatabase.org/. We used CVAP estimates from Statewide Database instead of

the Census Bureau because the Census has only block group-level estimates, whereas Statewide Database provides
block-level estimates.
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election was 2018, we would use 2011–2015 estimates. If the year of first district election was 2012
or earlier, we used 2006–2010 estimates, as this was the closest available option. We arrived at
this procedure after examining the supporting documentation of several city redistricting plans, as
illustrated by the following examples:

1. Banning: first conducted election in 2016, reports 2010–2014 5-year estimates in supporting
documentation;3

2. Brea: first conducted election in 2022, reports 2015–2019 5-year estimates in supporting
documentation;4

3. Menlo Park: first conducted election in 2018, reports 2011–2015 5-year estimates in supporting
documentation;5

4. Rancho Cucamonga: first conducted election in 2018, reports 2010–2014 5-year estimates in
supporting documentation;6

5. Richmond: first conducted election in 2020, reports 2012–2016 5-year estimates in supporting
documentation.7

3. Income. We collected block group-level median household income from the Census American
Community Survey (ACS) (CB Variable ID B19013 001). We assigned to each block the value
from its block group, as that was the lowest level of aggregation for which data was available. We
chose the ACS time period for each city according to the same approach outlined for voting-age
population, above.

4. Partisanship. Here, we wish to compute two block-level variables estimated at the time of
a city’s first district election: a count of Democratic voters that is reasonably robust to changes in
turnout between elections, as well as the total number of registered voters.

To do so, we collected partisanship and registration data from the general election files from
Statewide Database. For each city, we used data from the 6 general elections prior to the year of
first district election. For presidential election years (2004, 2008, 2012, 2016, 2020), we collected the
number of votes cast for the Democratic presidential candidate; for midterm election years (2002,
2006, 2010, 2014, 2018), we collected the number of votes cast for the Democratic gubernatorial
candidate.

A challenge of working with these data is translating them across geographies: voter registration
and partisanship are reported at the SR precinct level, whereas we require data at the block level.
To get around this, we downloaded a crosswalk file between SR precincts and 2010 Census blocks
from Statewide Database, which provides the percentage of an SR precinct that falls within a
given Census block.8 To convert SR precinct-level data to block-level estimates, we joined the

3http://www.banning.ca.us/DocumentCenter/View/4545/Banning-Draft-Maps-20160607?bidId=
4https://www.ci.brea.ca.us/DocumentCenter/View/12725/January-12-District-Mapping-Workshop-

PowerPoint-Presentation
5https://www.menlopark.org/DocumentCenter/View/15883/Presentation---Menlo-Park-Introduction-to-

Election-Systems
6http://www.ndcresearch.com/wp-content/uploads/2016/03/20160317-NDC-RC-Kickoff-Presentation-

v3.pdf
7https://www.ci.richmond.ca.us/DocumentCenter/View/51558/District-Elections-Community-Workshop-

Presentation-11-14-19-and-11-18-19?bidId=
8See documentation here: https://statewidedatabase.org/d10/Creating%20CA%20Official%

20Redistricting%20Database.pdf.

A-3

http://www.banning.ca.us/DocumentCenter/View/4545/Banning-Draft-Maps-20160607?bidId=
https://www.ci.brea.ca.us/DocumentCenter/View/12725/January-12-District-Mapping-Workshop-PowerPoint-Presentation
https://www.ci.brea.ca.us/DocumentCenter/View/12725/January-12-District-Mapping-Workshop-PowerPoint-Presentation
https://www.menlopark.org/DocumentCenter/View/15883/Presentation---Menlo-Park-Introduction-to-Election-Systems
https://www.menlopark.org/DocumentCenter/View/15883/Presentation---Menlo-Park-Introduction-to-Election-Systems
http://www.ndcresearch.com/wp-content/uploads/2016/03/20160317-NDC-RC-Kickoff-Presentation-v3.pdf
http://www.ndcresearch.com/wp-content/uploads/2016/03/20160317-NDC-RC-Kickoff-Presentation-v3.pdf
https://www.ci.richmond.ca.us/DocumentCenter/View/51558/District-Elections-Community-Workshop-Presentation-11-14-19-and-11-18-19?bidId=
https://www.ci.richmond.ca.us/DocumentCenter/View/51558/District-Elections-Community-Workshop-Presentation-11-14-19-and-11-18-19?bidId=
https://statewidedatabase.org/d10/Creating%20CA%20Official%20Redistricting%20Database.pdf
https://statewidedatabase.org/d10/Creating%20CA%20Official%20Redistricting%20Database.pdf


electoral data with the crosswalk file and computed estimates of the number of Democratic votes
and registered voters each Census block contributes to the SR total. We then aggregated all block-
level contributions by their Census block IDs.

Finally, to compute the block-level estimated count of Democratic voters, we calculated the sum
of block-level estimates of Democratic votes cast in the past 6 general elections (both presidential
and midterm), divided by the sum of block-level estimates of the number of overall votes in the
past 6 general elections, multiplied by the total number of registered voters in the general election
year immediately following the year of first district elections.

5. Statewide Election Returns. We measure the support for Latino candidates in statewide
elections using SR precinct returns for four statewide elections: Controller (2014), Secretary of
State (2014), US Senate (2016), and Lt. Governor (2018). These returns are also obtained from
Statewide Database and mapped to Census blocks according to the procedure described in (4)
directly above. We manually coded all candidates in these four elections as Latino or non-Latino.

Shapefile Preparation

After merging the above variables onto our baseline block-level shapefile for the state of California,
we intersected this file with each of our 106 city council district shapefiles. This process produced,
for each city, a block-level shapefile with both a vector of city council district assignments and the
complete set of variables described above.

As a final step in preparation for districting simulation, we checked that all blocks were con-
tiguous, as the simulation requires contiguous graphs. For disconnected blocks or components, we
manually assigned nearest neighbors, determined by visual inspection.

Defining Voting Bloc Concentration

The dissimilarity index can be interpreted as the proportion of Latinos that would have to change
places with non-Latinos in other districts so that all districts would have the same Latino share as
the city overall (Duncan and Duncan 1955). The index ranges from 0 for full integration to 1 for
full segregation.

Figure A-1 builds intuition around how the dissimilarity index summarizes the concentration
of a voting bloc. Panel (a) depicts Escondido, a midsize city with a population of approximately
150,000 located in San Diego County. Most of Escondido’s Latino residents live in the geographic
center of the city; predominantly white neighborhoods form a ring around this area. This structure
allows for two possibilities: a plan that concentrates the Latino area at the city center within a
single district (panel (b)), and one that distributes these voters equally across four districts (panel
(c)). Whereas the first approach yields a high dissimilarity index of 0.25, the second yields a low
value of 0.01.

B Districting Simulation

Redistricting Algorithm

We use the automated redistricting simulator proposed by Fifield et al. (2020). We select this
algorithm for a few reasons. First, it can incorporate contiguity, compactness, and equal population
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(a) City of Escondido, CA

Latino Proportion of CVAP

0.0 to 0.2
0.2 to 0.4
0.4 to 0.6
0.6 to 0.8
0.8 to 1.0
Missing

District
1
2
3
4

(b) Map 1: Maximizing
Dissimilarity Index

Latino Proportion of CVAP

0.0 to 0.2
0.2 to 0.4
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Missing
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1
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(c) Map 2: Minimizing
Dissimilarity Index

Figure A-1: Using the Dissimilarity Index to Measure Concentration of Latino Voters

Latino % CVAP
District Map 1 Map 2

1 0.37 0.21
2 0.16 0.21
3 0.28 0.21
4 0.13 0.22

Dissimilarity index 0.25 0.01
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constraints into the estimation process, meaning that it approximates the particular distribution of
plans that real-world decisionmakers, given the physical and residential geography of their city, can
feasibly produce under federal law. To our knowledge this algorithm is the best among currently
available methods at approximating this particular distribution that is of substantive interest to
us. Second, the algorithm is computationally efficient, scales well, and is easy to implement using
the R package redist (Kenny et al. 2021).

We refer the interested reader to a detailed discussion of the algorithm in the published articles
(Fifield et al. 2020; McCartan et al. 2022), presenting only the intuition here. The approach treats
the task of assigning m geographic units (for us, Census blocks) to n contiguous council districts
as a graph-cut problem: partitioning a graph — where nodes represent geographic units and edges
between two nodes represent their contiguity — into a set of connected subgraphs, representing
districts. It then uses a Sequential Monte Carlo (SMC) algorithm to obtain a representative sample
of plans from the distribution of valid plans as formulated in this way.

Parameter Selection

The algorithm requires a few key user-defined parameters. The first is compactness, which we set
at the default level of ρ = 1 for every city.9 Larger values of ρ correspond to a preference for fewer
edge cuts and therefore a redistricting plan with more compact districts. Based on the literature
on edge-cut compactness (Dube and Clark 2016; DeFord, Duchin and Solomon 2021), McCartan
and Imai (2022) suggest ρ = 1 as a choice that produces reasonably compact districts, and is
computationally efficient.

The user is also required to provide a value for the maximal deviation from population parity
— that is, where the city’s population is divided evenly among districts — that will be tolerated
of any district in a feasible plan. Legislative districting at the federal level is held to a very high
population equality standard. In the 1983 case Karcher v. Daggett, the Supreme Court ruled
that there is no deviation that could practically be avoided that is too small to potentially violate
the “one person, one vote” standard set by Article I, Section 2 of the Constitution. However, at
the local level, larger deviations may be necessary to achieve other districting goals, especially in
smaller and more sparsely or unevenly populated municipalities.

Absent concrete legal guidance or precedent at the city level, we approach the determination of
the maximum tolerable deviation from population parity as an empirical matter. First we compute,
for every adopted district plan, the maximal deviation of any district, given by:

max1≤l≤n

∣∣∣∣
∑

i∈Vl
pi

p̄
− 1

∣∣∣∣ (2)

where Vl is a district, n is the number of districts, i is a Census block, pi is the population in
block i from the 2010 Census, and p̄ is defined as

∑m
i=1 pi/n (where m is the number of blocks).

The second column of Table B-1 reports this maximal value for every city. We find that some
cities, in particular smaller ones, have very high values — far beyond what is usually tolerated at
the federal level — and the overall mean across cities is 0.10.10 We therefore set the population
tolerance parameter as the maximum of 0.01 and the city’s own adopted map’s largest deviation,11

9See McCartan and Imai (2022), Section 3.3 for further detail.
10By comparison, the maximum deviation of the New Jersey redistricting plan rejected by Karcher v. Daggett was

0.004: the decision reports an average district population of 526,059 and smallest district (Sixth District) population
of 523,798 (Karcher, Speaker, New Jersey Assembly, et al. v. Daggett et al. 1983).

11Although we made this decision as a safeguard against overly conservative restrictions, this constraint never
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with the rationale that if a certain deviation was permitted in practice, then any plan with smaller
deviations would have been fair game as well — at least on this dimension. While we cannot know
how much larger a deviation might have been tolerated, our approach yields relatively conservative
target distributions — that is, it may exclude some counterfactual possibilities that were in fact
on the table. Still, because the deviations are so high in practice, the algorithm still has a large
degree of freedom to explore alternative plans.

Diagnostics

We run the SMC algorithm with 4 independent chains with 10,000 simulations in each chain to
assess convergence. This gives us 40,000 draws from the target distribution. Then we renumber
the districts for each plan in a way that minimizes the number of blocks that have changed from
the adopted plan.

The redist package helpfully computes several diagnostics to help the user assess whether
the algorithm successfully sampled from the target distribution. We briefly describe each of these
diagnostics, reported in Table B-1, and refer the reader to Fifield et al. (2020) as well as the redist
package documentation12 for more details.

• Diversity (Column 3)
The off-diagonal elements of the variation of information distance matrix for our sample of
plans. Column 3 reports the 80% range of this statistic. Generally, diversity is good if most
values are greater than 0.5.

• R̂ (Columns 4–7)
R̂ values across the four chains computed for four variables: population overlap (Column 3),
which measures how much of the population is in the same district in both a given plan and
the reference plan, as well as homeownership rate (Column 4), percent of CVAP that is Latino
(Column 5), and percent of voters who are Democrats (Column 6) — all defined in Appendix
A above. R̂ is calculated for the first district only; other districts look similar. R̂ values
should be close to 1 and generally under 1.05; otherwise, there is too much between-chain
variation, indicating not enough samples.

• Effective Sample Size (Column 8)
The ratio of the effective sample size, computed using the SMC weights, to the total samples.
Computed for run 1 of chain 1. Reported range is the minimum and maximum value across
splits, excluding resample. Larger values (close to 100%) are better.

• Acceptance Rate (Column 9)
Fraction of drawn spanning trees that yield a valid redistricting plan within the population
tolerance. Computed for run 1 of chain 1. Reported range is the minimum and maximum
value across splits. We seek to avoid very small values (< 1%), which can indicate a bottleneck.

• Maximum Unique Plans (Column 10)
An upper bound on the number of unique redistricting plans that survive each stage. Com-
puted for run 1 of chain 1. Reported range is the minimum and maximum value across splits,
excluding resample. Small values indicate a bottleneck.

binds in practice: the observed value is never less than 0.01.
12https://alarm-redist.org/redist/reference/summary.redist_plans.html
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• Standard Deviation of the Log Weights (Column 11)
Standard deviation of the log weights. Computed for run 1 of chain 1. Reported range is the
minimum and maximum value across splits, excluding resample. High standard deviations
indicate less efficient sampling; values greater than 3 are likely problematic.

As Table B-1 indicates, we achieve desirable values on all of the above diagnostics in
all cities.
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Table B-1: Diagnostics from Redistricting Simulations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

City Pop. Tol. Diversity R̂: pop overlap R̂ : own rate R̂ : pct latino R̂ : pct dem ESS Acc. Rate Max. Un. Plans SD

Anaheim 0.0562 [0.54,0.76] 1.0029 1.0007 1.0005 1.0023 [88.4%, 91.1%] [25.3%, 53.7%] [5392,6319] [0.58,0.74]

Apple Valley 0.0681 [0.74,0.97] 1.0005 1.0003 1.0005 1.0002 [88.7%, 98.5%] [10.8%, 30.7%] [5693,6303] [0.24,0.55]

Atwater 0.0543 [0.42,0.76] 1.0006 1.0006 1.0004 1.0003 [81.6%, 87.7%] [9.9%, 26.8%] [5584,6410] [0.62,0.72]

Banning 0.0330 [0.37,0.68] 1.0022 1.0012 1.0007 1.0014 [79.6%, 88.6%] [12.0%, 29.2%] [5419,6388] [0.64,0.77]

Barstow 0.0371 [0.45,0.75] 1.0005 1.0007 1.0006 1.0007 [87.6%, 97.6%] [14.8%, 32.3%] [5542,6258] [0.30,0.74]

Big Bear Lake 0.0743 [0.25,0.63] 1.0014 1.0007 1.0007 1.0005 [83.7%, 94.2%] [17.6%, 29.1%] [5467,6313] [0.49,0.71]

Buena Park 0.1243 [0.55,0.85] 1.0001 1.0004 1.0003 1.0003 [90.9%, 96.9%] [24.2%, 63.2%] [5622,6295] [0.37,0.55]

Camarillo 0.1488 [0.65,0.91] 1.0002 1.0005 1.0001 1.0004 [89.6%, 97.4%] [29.4%, 75.1%] [5616,6308] [0.32,0.59]

Campbell 0.2652 [0.49,0.82] 1.0002 1.0002 1.0004 1.0002 [89.9%, 97.0%] [38.6%, 76.8%] [5555,6291] [0.35,0.60]

Carlsbad 0.0624 [0.46,0.84] 1.0004 1.0004 1.0006 1.0004 [91.2%, 96.5%] [17.1%, 31.4%] [5759,6372] [0.37,0.59]

Cathedral City 0.0538 [0.56,0.88] 1.0010 1.0009 1.0007 1.0011 [90.1%, 96.2%] [14.7%, 36.7%] [5684,6321] [0.39,0.56]

Ceres 0.0175 [0.42,0.72] 1.0004 1.0001 1.0001 1.0004 [93.8%, 95.2%] [6.3%, 13.8%] [5840,6284] [0.39,0.48]

Chino Hills 0.0700 [0.60,0.88] 1.0008 1.0018 1.0008 1.0009 [89.3%, 96.2%] [14.2%, 41.7%] [5514,6340] [0.49,0.61]

Chula Vista 0.0995 [0.59,0.86] 1.0004 1.0003 1.0003 1.0005 [89.2%, 96.4%] [27.9%, 54.7%] [5792,6294] [0.36,0.58]

Citrus Heights 0.0980 [0.60,0.87] 1.0005 1.0006 1.0007 1.0008 [88.6%, 96.9%] [22.4%, 59.6%] [5679,6315] [0.35,0.58]

Claremont 0.1195 [0.47,0.82] 1.0009 1.0005 1.0010 1.0002 [85.7%, 93.4%] [24.8%, 46.5%] [5501,6282] [0.50,0.66]

Compton 0.0337 [0.57,0.86] 1.0002 1.0004 1.0002 1.0006 [93.8%, 98.1%] [14.4%, 26.7%] [5783,6337] [0.28,0.45]

Concord 0.1093 [0.75,0.97] 1.0009 1.0014 1.0009 1.0010 [90.8%, 97.2%] [28.4%, 61.4%] [5640,6285] [0.33,0.56]

Corona 0.0169 [0.59,0.86] 1.0008 1.0009 1.0005 1.0007 [91.9%, 96.7%] [10.3%, 30.3%] [5482,6359] [0.36,0.55]

Dana Point 0.0860 [0.48,0.75] 1.0003 1.0021 1.0025 1.0005 [87.7%, 91.6%] [24.9%, 47.3%] [5466,6338] [0.54,0.65]

Dixon 0.0237 [0.62,0.89] 1.0002 1.0007 1.0013 1.0003 [91.0%, 96.8%] [10.7%, 19.9%] [5820,6298] [0.35,0.52]

Duarte 0.4438 [0.46,0.70] 1.0010 1.0034 1.0013 1.0025 [84.3%, 94.3%] [30.1%, 88.0%] [5049,6301] [0.48,0.71]

Eastvale 0.0652 [0.69,0.96] 1.0003 1.0005 1.0002 1.0008 [88.3%, 97.0%] [15.8%, 33.1%] [5480,6284] [0.34,0.61]

Elk Grove 0.0887 [0.57,0.86] 1.0008 1.0003 1.0005 1.0005 [90.6%, 97.5%] [24.6%, 41.7%] [5748,6315] [0.31,0.56]

Encinitas 0.0650 [0.59,0.89] 1.0008 1.0010 1.0005 1.0004 [90.2%, 97.1%] [11.7%, 19.3%] [5732,6318] [0.34,0.57]

Escondido 0.0291 [0.56,0.89] 1.0002 1.0002 1.0002 1.0003 [92.4%, 98.1%] [9.0%, 16.0%] [5615,6338] [0.28,0.50]

Exeter 0.1696 [0.52,0.85] 1.0016 1.0004 1.0012 1.0012 [88.9%, 96.0%] [32.0%, 62.6%] [5405,6318] [0.37,0.61]

Fairfield 0.0354 [0.56,0.82] 1.0005 1.0007 1.0009 1.0006 [96.3%, 93.2%] [6.1%, 35.4%] [5503,6364] [0.47,0.66]

Fontana 0.0368 [0.52,0.81] 1.0000 1.0003 1.0001 1.0001 [90.3%, 96.4%] [15.0%, 26.0%] [5865,6366] [0.39,0.51]

Fullerton 0.0976 [0.63,0.88] 1.0009 1.0002 1.0006 1.0003 [88.9%, 96.7%] [24.7%, 62.4%] [5630,6358] [0.37,0.59]

Garden Grove 0.1182 [0.61,0.87] 1.0011 1.0006 1.0004 1.0003 [87.2%, 96.1%] [31.5%, 72.1%] [5485,6302] [0.40,0.63]

Glendora 0.0475 [0.71,0.94] 1.0009 1.0002 1.0002 1.0006 [92.0%, 96.7%] [13.4%, 39.4%] [5604,6346] [0.35,0.53]

Half Moon Bay 0.1330 [0.61,0.89] 1.0001 1.0003 1.0004 1.0002 [90.2%, 96.9%] [18.8%, 38.7%] [5540,6314] [0.35,0.55]

Hemet 0.0270 [0.63,0.88] 1.0016 1.0012 1.0005 1.0008 [90.3%, 96.7%] [11.3%, 22.6%] [5536,6358] [0.37,0.58]

Hesperia 0.0208 [0.68,0.94] 1.0018 1.0013 1.0006 1.0012 [89.1%, 98.0%] [17.5%, 35.2%] [5611,6320] [0.28,0.56]

Imperial Beach 0.0803 [0.69,0.94] 1.0002 1.0004 1.0003 1.0004 [92.5%, 98.1%] [20.8%, 39.1%] [5786,6345] [0.27,0.49]

Indio 0.0480 [0.60,0.92] 1.0007 1.0001 1.0003 1.0001 [88.5%, 96.4%] [13.2%, 30.8%] [5532,6381] [0.38,0.62]
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

City Pop. Tol. Diversity R̂: pop overlap R̂ : own rate R̂ : pct latino R̂ : pct dem ESS Acc. Rate Max. Un. Plans SD

Jurupa Valley 0.0559 [0.70,0.94] 1.0008 1.0004 1.0003 1.0010 [88.8%, 98.0%] [18.8%, 42.5%] [5664,6292] [0.28,0.57]

King City 0.0466 [0.67,0.93] 1.0016 1.0003 1.0018 1.0003 [89.2%, 97.9%] [5.2%, 16.0%] [4660,6399] [0.28,0.59]

Kingsburg 0.0571 [0.43,0.73] 1.0005 1.0002 1.0007 1.0001 [92.4%, 97.1%] [10.2%, 34.5%] [5170,6362] [0.35,0.55]

Lake Forest 0.0623 [0.55,0.85] 1.0012 1.0016 1.0013 1.0015 [90.0%, 96.7%] [17.3%, 36.7%] [5610,6321] [0.37,0.57]

La Mirada 0.0658 [0.54,0.86] 1.0011 1.0000 1.0005 1.0001 [89.6%, 97.2%] [19.2%, 37.7%] [5522,6307] [0.34,0.57]

Lemoore 0.0350 [0.50,0.85] 1.0020 1.0014 1.0006 1.0024 [96.6%, 94.5%] [10.8%, 28.4%] [5467,6337] [0.42,0.65]

Lincoln 0.1592 [0.47,0.80] 1.0005 1.0002 1.0009 1.0007 [83.5%, 95.5%] [24.0%, 55.4%] [5516,6262] [0.40,0.73]

Lodi 0.0163 [0.72,0.95] 1.0010 1.0007 1.0009 1.0008 [90.2%, 97.8%] [6.9%, 32.8%] [5621,6363] [0.30,0.55]

Lompoc 0.2231 [0.64,0.91] 1.0002 1.0005 1.0001 1.0003 [89.9%, 96.8%] [31.1%, 53.4%] [5660,6389] [0.34,0.57]

Los Banos 0.0670 [0.57,0.85] 1.0002 1.0005 1.0005 1.0002 [92.4%, 97.8%] [16.1%, 29.1%] [5533,6319] [0.30,0.51]

Madera 0.1849 [0.66,0.90] 1.0012 1.0002 1.0005 1.0004 [88.9%, 97.8%] [29.1%, 73.3%] [5615,6355] [0.30,0.58]

Marina 0.1746 [0.61,0.93] 1.0002 1.0003 1.0003 1.0001 [92.7%, 97.6%] [15.2%, 27.9%] [5729,6351] [0.31,0.52]

Menlo Park 0.2046 [0.42,0.74] 1.0008 1.0009 1.0010 1.0008 [90.8%, 95.2%] [23.6%, 54.6%] [5779,6332] [0.43,0.55]

Modesto 0.0991 [0.57,0.83] 1.0007 1.0003 1.0002 1.0002 [86.4%, 94.4%] [18.4%, 57.5%] [5525,6350] [0.47,0.63]

Monterey Park 0.0184 [0.67,0.91] 1.0001 1.0012 1.0011 1.0011 [91.0%, 96.4%] [5.4%, 21.9%] [5689,6313] [0.37,0.55]

Morgan Hill 0.0855 [0.29,0.70] 1.0005 1.0005 1.0001 1.0000 [92.2%, 97.2%] [18.0%, 30.0%] [5601,6359] [0.34,0.56]

Murrieta 0.1599 [0.68,0.94] 1.0002 1.0013 1.0002 1.0014 [88.8%, 97.2%] [25.1%, 45.4%] [5632,6313] [0.33,0.60]

Napa 0.0919 [0.56,0.86] 1.0009 1.0002 1.0005 1.0001 [89.6%, 97.5%] [28.1%, 50.2%] [5816,6281] [0.31,0.54]

Novato 0.1033 [0.63,0.89] 1.0017 1.0016 1.0007 1.0009 [89.6%, 97.0%] [16.9%, 39.7%] [5585,6282] [0.35,0.58]

Ojai 0.1586 [0.59,0.80] 1.0000 1.0002 1.0004 1.0003 [95.2%, 98.5%] [21.6%, 39.2%] [5742,6349] [0.25,0.42]

Orange 0.0869 [0.60,0.86] 1.0007 1.0003 1.0008 1.0010 [87.2%, 93.9%] [24.9%, 54.2%] [5408,6296] [0.48,0.68]

Oxnard 0.1103 [0.69,0.91] 1.0010 1.0005 1.0005 1.0009 [88.3%, 96.7%] [26.4%, 61.7%] [5419,6308] [0.36,0.60]

Pacifica 0.1710 [0.62,0.90] 1.0002 1.0005 1.0001 1.0005 [87.2%, 97.3%] [25.1%, 64.4%] [5476,6309] [0.34,0.65]

Palmdale 0.0166 [0.48,0.72] 1.0002 1.0012 1.0003 1.0005 [92.9%, 95.2%] [10.8%, 21.8%] [5903,6335] [0.39,0.49]

Palm Springs 0.0682 [0.61,0.92] 1.0002 1.0003 1.0004 1.0003 [87.2%, 97.3%] [25.1%, 64.4%] [5476,6309] [0.34,0.65]

Paso Robles 0.1280 [0.45,0.80] 1.0006 1.0000 1.0000 1.0001 [90.0%, 94.6%] [15.5%, 25.6%] [5582,6310] [0.47,0.61]

Patterson 0.0232 [0.59,0.86] 1.0003 1.0002 1.0000 1.0007 [92.1%, 97.5%] [8.1%, 15.1%] [5793,6365] [0.32,0.51]

Placentia 0.0835 [0.55,0.83] 1.0007 1.0028 1.0009 1.0012 [89.1%, 97.1%] [15.2%, 33.9%] [5572,6289] [0.35,0.57]

Porterville 0.0951 [0.65,0.90] 1.0006 1.0021 1.0010 1.0011 [88.4%, 96.3%] [29.8%, 60.7%] [5629,6302] [0.37,0.60]

Poway 0.0779 [0.64,0.91] 1.0008 1.0001 1.0004 1.0005 [93.4%, 98.1%] [14.7%, 32.4%] [5304,6333] [0.27,0.48]

Rancho Cucamonga 0.0489 [0.72,0.97] 1.0002 1.0001 1.0002 1.0003 [93.3%, 98.5%] [15.5%, 34.6%] [5858,6349] [0.25,0.46]

Redlands 0.0184 [0.73,0.96] 1.0005 1.0008 1.0012 1.0013 [91.4%, 98.3%] [11.5%, 28.5%] [5669,6334] [0.26,0.54]

Redwood City 0.2806 [0.71,0.90] 1.0018 1.0001 1.0002 1.0002 [89.4%, 92.9%] [29.8%, 78.9%] [5361,6346] [0.50,0.60]

Richmond 0.1215 [0.55,0.81] 1.0046 1.0054 1.0070 1.0055 [76.0%, 82.3%] [23.8%, 63.6%] [5375,6324] [0.69,0.79]

Rohnert Park 0.1662 [0.52,0.83] 1.0005 1.0005 1.0003 1.0003 [87.6%, 95.7%] [25.1%, 50.1%] [5660,6334] [0.42,0.62]

Roseville 0.0940 [0.57,0.87] 1.0012 1.0003 1.0006 1.0002 [88.8%, 96.9%] [28.1%, 54.7%] [5567,6296] [0.35,0.60]

Sanger 0.0373 [0.59,0.87] 1.0007 1.0005 1.0009 1.0009 [91.2%, 97.9%] [11.5%, 23.0%] [5715,6365] [0.29,0.50]

San Rafael 0.0245 [0.24,0.66] 1.0030 1.0015 1.0026 1.0012 [86.6%, 96.6%] [7.7%, 13.9%] [5547,6315] [0.38,0.61]

Santa Barbara 0.3315 [0.76,0.98] 1.0001 1.0006 1.0001 1.0006 [88.6%, 96.8%] [47.2%, 93.5%] [5446,6345] [0.35,0.60]

Santa Clara 0.0735 [0.66,0.87] 1.0012 1.0010 1.0003 1.0010 [90.6%, 97.1%] [26.1%, 58.2%] [5506,6287] [0.35,0.54]
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

City Pop. Tol. Diversity R̂: pop overlap R̂ : own rate R̂ : pct latino R̂ : pct dem ESS Acc. Rate Max. Un. Plans SD

Santa Maria 0.0161 [0.61,0.91] 1.0008 1.0002 1.0002 1.0001 [91.5%, 97.1%] [12.3%, 22.9%] [5757,6288] [0.34,0.52]

Santa Rosa 0.0919 [0.69,0.93] 1.0027 1.0065 1.0007 1.0073 [82.0%, 96.7%] [21.1%, 54.3%] [5372,6348] [0.37,0.68]

Santee 0.0479 [0.42,0.79] 1.0010 1.0007 1.0002 1.0009 [89.5%, 96.3%] [12.6%, 25.6%] [5664,6345] [0.39,0.60]

Selma 0.0668 [0.49,0.81] 1.0009 1.0004 1.0003 1.0003 [89.9%, 97.3%] [16.5%, 29.8%] [5618,6335] [0.33,0.56]

Simi Valley 0.0716 [0.65,0.92] 1.0008 1.0006 1.0008 1.0007 [91.4%, 97.5%] [23.6%, 43.1%] [5764,6302] [0.31,0.52]

Solana Beach 0.2383 [0.50,0.82] 1.0004 1.0001 1.0002 1.0005 [92.5%, 97.6%] [19.9%, 37.4%] [5601,6340] [0.31,0.49]

South Pasadena 0.0575 [0.66,0.92] 1.0004 1.0005 1.0003 1.0005 [92.6%, 98.1%] [16.9%, 38.0%] [5358,6276] [0.27,0.50]

South San Francisco 0.1096 [0.33,0.63] 1.0008 1.0006 1.0008 1.0004 [82.1%, 88.3%] [20.7%, 37.5%] [5354,6289] [0.68,0.90]

Stanton 0.0545 [0.29,0.63] 1.0003 1.0000 1.0001 1.0002 [87.4%, 91.4%] [8.0%, 17.6%] [5200,6361] [0.51,0.70]

Stockton 0.0605 [0.70,0.94] 1.0016 1.0009 1.0011 1.0007 [87.2%, 96.3%] [18.5%, 40.4%] [5325,6333] [0.38,0.67]

Sunnyvale 0.0829 [0.70,0.91] 1.0014 1.0008 1.0010 1.0003 [90.4%, 97.6%] [17.8%, 57.9%] [5495,6297] [0.31,0.56]

Temecula 0.1160 [0.67,0.92] 1.0004 1.0009 1.0008 1.0010 [91.3%, 97.3%] [18.5%, 41.2%] [5673,6319] [0.32,0.55]

Torrance 0.0531 [0.64,0.87] 1.0005 1.0006 1.0004 1.0004 [90.8%, 94.3%] [18.4%, 57.5%] [5450,6394] [0.45,0.57]

Tulare 0.0303 [0.63,0.92] 1.0018 1.0006 1.0006 1.0012 [85.9%, 96.9%] [10.2%, 37.8%] [5523,6311] [0.36,0.65]

Turlock 0.0640 [0.62,0.88] 1.0006 1.0003 1.0003 1.0003 [92.8%, 97.6%] [16.8%, 30.6%] [5832,6322] [0.30,0.49]

Twentynine Palms 0.2716 [0.53,0.78] 1.0025 1.0010 1.0003 1.0012 [80.1%, 92.9%] [28.4%, 56.1%] [5699,6299] [0.53,0.76]

Union City 0.0504 [0.46,0.79] 1.0004 1.0001 1.0000 1.0001 [92.1%, 96.0%] [19.3%, 36.8%] [5861,6333] [0.39,0.55]

Upland 0.0415 [0.58,0.88] 1.0010 1.0007 1.0002 1.0005 [89.9%, 96.5%] [16.3%, 31.7%] [5785,6357] [0.37,0.58]

Vallejo 0.0163 [0.68,0.96] 1.0008 1.0015 1.0023 1.0004 [89.9%, 97.4%] [10.0%, 21.5%] [5365,6325] [0.33,0.58]

Ventura 0.0373 [0.57,0.82] 1.0031 1.0008 1.0011 1.0010 [83.0%, 94.6%] [18.8%, 45.1%] [5179,6282] [0.49,0.71]

Visalia 0.1042 [0.74,0.97] 1.0005 1.0002 1.0003 1.0006 [92.5%, 98.3%] [28.3%, 65.2%] [5704,6308] [0.26,0.48]

Vista 0.0751 [0.51,0.81] 1.0003 1.0007 1.0003 1.0002 [92.2%, 97.4%] [20.3%, 35.3%] [5733,6354] [0.33,0.52]

Wasco 0.9150 [0.54,0.80] 1.0003 1.0013 1.0009 1.0010 [80.1%, 83.5%] [15.6%, 81.4%] [5223,6329] [0.71,0.77]

West Covina 0.0819 [0.45,0.71] 1.0005 1.0002 1.0005 1.0007 [88.7%, 92.2%] [25.9%, 58.7%] [5652,6331] [0.48,0.64]

Westminster 0.0922 [0.46,0.79] 1.0001 1.0001 1.0002 1.0001 [91.0%, 97.5%] [19.9%, 43.7%] [5830,6351] [0.31,0.54]

Whittier 0.1058 [0.51,0.81] 1.0004 1.0005 1.0005 1.0002 [90.0%, 96.2%] [29.5%, 50.8%] [5848,6310] [0.40,0.56]

Wildomar 0.0948 [0.56,0.81] 1.0004 1.0007 1.0003 1.0003 [90.9%, 98.1%] [15.2%, 35.6%] [5209,6354] [0.27,0.56]

Woodland 0.1780 [0.62,0.89] 1.0002 1.0007 1.0012 1.0002 [88.5%, 95.5%] [24.4%, 59.1%] [5532,6300] [0.40,0.61]

Yucaipa 0.0499 [0.74,0.99] 1.0001 1.0006 1.0002 1.0004 [91.4%, 98.6%] [17.7%, 34.4%] [5644,6326] [0.24,0.52]

Yucca Valley 0.0534 [0.77,1.00] 1.0006 1.0005 1.0008 1.0002 [92.1%, 98.2%] [11.5%, 38.9%] [5486,6322] [0.27,0.51]
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Using ShortBurst to Explore Extreme Values of the Distributions

After running the SMC algorithm on each city, we additionally run a second round of redistricting
optimization through “short bursts,” implemented in the redist package through the function
redist shortburst and described in Cannon et al. (2020). This approach finds the extreme values
of the simulation distribution by running a Markov chain for a small number of iterations (a “short
burst”), then restarting the chain from the most extreme plan encountered in the previous burst.
We define the extremity of a plan based on the highest fraction of Latino voters across its districts.
Thus, this final step helps us find the plans with the highest possible concentration of Latino voters
in a district, including outlying values that are not captured when exploring the distribution using
SMC.

Since the short burst algorithm is designed to find extreme values, we do not include these plans
most of our analyses, so that our sampled plans remain representative of the target distribution.
However, in Figures D-2 through D-6, we include the plans returned by short burst when reporting
the minimum and maximum (but not the mean) of each city’s simulation distribution.

C Estimating Measures of Electoral Success

We take a four-step approach to estimating predicted Latino electoral success for any simulated
districting plan.

1. Estimation Step: We begin by estimating a logistic regression on real-world city council
election data for the 106 cities in our sample, post-districting. Our dataset contains one
observation for every election that took place in a city, council district, and election year.
Estimated coefficients from this regression are reported in Table C-1.

Dependent variable: A binary indicator for whether a Latino won office in a city-district-
election year. Names of winning candidates are drawn from the California Elections Data
Archive (CEDA) and candidate race is estimated using the R package wru (Imai and Khanna
2021).

Predictors: We include the following district-level predictors of electing a Latino candidate,
which we compute by aggregating our shapefile data (described in detail in Appendix A
above) from the Census block to the city council district level under each city’s adopted plan:

(a) Total citizen voting-age population (CVAP)13

(b) Proportion of CVAP that is Black/African American, Asian, and Hispanic/Latino 14

(c) Proportion of registered voters who are Democrats15

(d) Homeownership rate16

(e) Citywide measure of segregation (dissimilarity index)

(f) Vote share to all Latino candidates in the following statewide elections:

• Controller, 2014

• Senate, 2016

13See section 2 of Appendix A for variable construction.
14We leave white and other as the omitted category. See section 2 of Appendix A for variable construction.
15See section 4 of Appendix A for variable construction.
16See section 1 of Appendix A for variable construction.
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• Lieutenant Governor, 201817

2. Aggregation Step: For each simulated plan, we compute all of the predictors that went
into the estimation model by aggregating up from Census blocks.

3. Prediction Step: Using the model estimated in Step 1 and the predictors computed in Step

2, we generate a predicted p̂d = ̂Pr(Winner is Latinod) for every simulated district in every
city.

4. Manipulation Step: With a set of p̂d’s in hand for every plan, we can manipulate the
district-level probabilities of electing Latino candidates into our plan-level electoral outcomes
of interest:

• E[Latino council share] = 1
D

∑D
d=1 p̂d

• Pr(At least one Latino on council) = 1−Pr(No Latinos on council) = 1−
∏D

d=1(1− p̂d)

• Pr(Latino majority on council) =
∑

{L,N}∈M
(∏

l∈L p̂l ∗
∏

n∈N (1− p̂n)
)
where M is the

set of all possible ways to make a set L of Latino-winning districts and N of non-Latino-
winning districts s.t. |L| ≥ |N |.

These computations are valid under the simplifying assumption that district elections are
independent of one another. While we recognize that there are almost certainly spillovers
across districts — for instance, potential candidates’ calculations about entering a race in
one district may also depend on conditions in other districts — such dependencies would be
prohibitively computationally intensive to model.

Validating the Predictive Model

We evaluate the predictive power of our model in two ways. First, we use repeated ten-fold cross-
validation, repeated twenty times. The model’s average accuracy over the twenty trials is 0.763.
We also use a randomly sampled partition of the data (60%) as a training set for fitting the model
and the remainder (40%) as the test set, to generate predictions. Table C-2 presents a confusion
matrix for these predictions in the test set, compared to the reference of their true values. The
model has reasonably high accuracy out of sample, above 0.8.

17See section 5 of Appendix A for variable construction. We omit the 2014 Secretary of State race, on which we
have also gathered data, from the model because of its high correlation with the 2014 Controller race.
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Table C-1: Estimated Coefficients from Logistic Regression Predicting District-Level Probability
of Electing Latino Candidates (1) and White Candidates (2)

(1) (2)

District Proportion of CVAP, African-American −0.944 −2.150
(1.408) (1.388)

District Proportion of CVAP, Asian −2.138 −5.659∗∗∗

(1.426) (1.154)
District Proportion of CVAP, Latino 5.130∗∗∗ −5.545∗∗∗

(1.260) (1.207)
District Total CVAP 0.00002 0.00001

(0.00001) (0.00001)
District Democratic Vote Share 4.092∗ −0.480

(2.006) (3.837)
Homeownership Rate in District −0.046 1.809∗

(0.937) (0.805)
Citywide Segregation 1.774 −2.968

(2.372) (2.126)
District Vote Share to Latino Candidates, 2014 Controller −5.635

(3.344)
District Vote Share to Latino Candidates, 2016 Senate 2.912

(1.900)
District Vote Share to Latino Candidates, 2018 Lieutenant Governor −0.382

(2.510)
District Vote Share to White Candidates, 2014 Controller −0.833

(2.881)
District Vote Share to White Candidates, 2016 Senate 2.193

(3.314)
District Vote Share to White Candidates, 2018 Lieutenant Governor −0.276

(2.457)

Observations 507 507
Log Likelihood -245.484 -270.166
Akaike Inf. Crit. 512.968 562.332

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table C-2: Confusion Matrix and Statistics for the Prediction Model (1=Latino candidate elected,
0=other candidate elected)

Reference
Prediction 0 1

0 142 36
1 3 21

Accuracy: 0.807 (95% CI: 0.746, 0.859)
Sensitivity: 0.368
Specificity: 0.979
Precision: 0.875
Recall: 0.368
F1: 0.519
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D Simulation Distributions
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Figure D-2: Simulation Distributions: Share of Council Seats Where Latinos Are the Majority of
the Citizen Voting-Age Population
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Figure D-3: Simulation Distributions: Expected Share of Council Seats Held by Latinos
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Figure D-4: Simulation Distributions: Probability of at Least One Latino on Council
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Figure D-5: Simulation Distributions: Probability of Latino Majority on Council
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Figure D-6: Simulation Distributions: Dissimilarity Index of Plans, Latino vs. Non-Latino
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E Additional Tables and Figures

Figure E-7: Correlations Between Measures of Latino Electoral Advantage
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Figure E-8: Correlations Between Share of Seats with Majority Democratic Registered Voters and
Latino Electoral Advantage
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