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Abstract

Institutional reforms designed to enhance democratic representation often place
implementation in the hands of incumbents. We examine how incumbents use this
control to protect their interests by leveraging the California Voting Rights Act of 2001,
which prompted hundreds of jurisdictions to switch from at-large to district elections
to improve minority representation. Using a state-of-the-art redistricting simulation
algorithm, we show that adopted council maps overwhelmingly placed incumbents
alone in their districts—63% of cities’ plans ranked in the 99th percentile or higher for
avoidance of incumbent pairings. This pattern was especially pronounced in smaller,
whiter cities with lower turnout and more competitive elections. Crucially, incumbent
protection deters challenger entry and reduces Latino electoral success. In Latino-
opportunity districts, a lone incumbent decreases the probability of a Latino being
elected by 19 percentage points. Our findings show how reforms can be blunted by
those empowered to implement them, ultimately reinforcing existing power structures.
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Introduction

The reform of local electoral and governance institutions has long been viewed as a

pathway to improving representation in municipal government. From the adoption

of district elections to combat Black voter suppression in the American South (Sass

and Mehay 1995; Trebbi, Aghion, and Alesina 2008), to the sweeping Progressive Era

reforms in the Southwest (Bridges 1999), and, more recently, to the implementation of

ranked choice voting in New York City’s mayoral primaries (Colner 2024), reformers have

recognized that the rules of the game shape outcomes. Accordingly, they have sought to

restructure those rules to empower marginalized groups and create incentives for more

democratically responsive and accountable government.

Yet the literature in American local politics is replete with examples of institutions

failing to produce substantive differences in representation or policy outcomes (e.g.,

Tausanovitch and Warshaw 2014; Sahn 2023; Colner 2024). In this paper, we posit an

explanation for these surprising results that has not received adequate scholarly attention.

We argue that the implementation of reform is often entrusted to the officials currently in

government—those with a vested interest in protecting the status quo. When confronted

with external pressures to restructure the rules of the game, incumbent politicians may

use their superior knowledge and influence over essential features of institutional design

to resist meaningful change and remain in power. Ultimately, such efforts undermine the

success of any reform that threatens incumbent politicians—whether by regulating their

behavior, redistributing resources, or expanding political access to new groups.

Our analysis leverages the California Voting Rights Act (CVRA) of 2001, which

compelled hundreds of cities to switch from at-large to district elections for city councils,

school boards, and other municipal governments. Under at-large city council elections—

in which every resident may vote for candidates running for each seat in first-past-the-

post contests—white majorities consistently secured disproportionate representation.

Consequently, because these officeholders tended to emerge from the same white, affluent
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neighborhoods—and to be most responsive to those neighborhoods’ interests—minority-

dominated swaths of the city would experience structural disinvestment and unequal

access to education, infrastructure, and public services. The CVRA was conceived to

break this cycle through the adoption of district elections, in which the city is carved

into smaller geographic constituencies, each with the ability to elect a resident of only

that district to a council seat. According to the logic of the reform, if some of these

districts could be drawn to give racial or ethnic minorities—usually, Hispanic or Latino

communities in this context—a local majority, then they could elect their candidates of

choice from their own neighborhoods and gain a seat at the table in local government.1

Recent work evaluating the effects of the CVRA on minority officeholding and policy

outcomes has found that district elections have, on average, empowered previously

underrepresented communities, though the effects have been more heterogeneous and

less pronounced than reformers may have hoped for (Abott and Magazinnik 2020;

Collingwood and Long 2021; Hankinson and Magazinnik 2023). Our work highlights

an important but understudied mechanism behind the limitations of district elections as

a tool for minority empowerment: district maps were consistently drawn to place each

at-large incumbent alone in their own district. By avoiding incumbent pairings, cities

maximized the number of at-large councilmembers that could retain their office after the

reform. While media accounts have documented this practice of incumbent protection

anecdotally, our analysis is the first to collect systematic data and apply a principled

methodology to quantify the degree of incumbent protection across a large number of

cities that were compelled to adopt district elections.

To do so, we collect the newly adopted city council district plans as well as the

residential locations of all at-large incumbent councilmembers for as many California

cities as possible. In all, we are able to gather complete records for 87 cities, which are

1. Throughout this paper, we will use the terms “Hispanic” and “Latino” interchangeably. While we
are primarily interested in the political representation of Latinos—U.S. residents with Latin-American
ancestry—much of our analysis relies on the Census classification of “Hispanic,” a linguistic category. In
practice, there is a great deal of overlap between these two classifications in the California setting.
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representative of the universe of 167 cities that converted to district elections for city

council under the CVRA. Using these geospatial data, we compute a citywide measure of

incumbent protection based on observed incumbent pairings. Then, we apply a state-of-

the-art redistricting algorithm (Fifield et al. 2020; Kenny et al. 2021; McCartan et al. 2022)

to simulate the distribution of technically feasible plans within each city, given its unique

physical and political geography as well as legal requirements such as contiguity and

population parity. This allows us to quantify just how unusual the observed degree of

incumbent protection is in each city, compared to the distribution of alternatives that

could have been counterfactually adopted based on these criteria. Our analysis yields

overwhelming and incontrovertible evidence of incumbent protection: 63% of cities’

enacted plans are in the 99th percentile or above of their simulation distributions of our

measure of avoidance of incumbent pairings.

This systematic approach allows us to make general inferences about the conditions

under which incumbent protection is likely to emerge. We find that incumbents are most

likely to secure protection when they have the motive and the opportunity to do so. They

have the motive in cities with more competitive elections, where incumbents have to fear

more serious challengers for their seats. They have the opportunity in cities with smaller,

whiter populations and lower voter turnout—where both internal mobilization for reform

and external monitoring of compliance are likely weaker.

Most importantly, the CVRA presents a unique opportunity to study the downstream

effects of incumbent protection on electoral competition and descriptive representation.

District elections are meant to attract high-quality newcomers by lowering the bar for

them to win elections: instead of competing with the political establishment for citywide

majorities, candidates only have to win the support of their home districts, where they

can run relatively low-cost, grassroots campaigns. By distributing incumbents over the

newly created districts, however, cities undercut this logic. We find that increasing the

number of districts containing at least one incumbent decreases overall challenger entry

3



as well as the entry and success of Latino candidates. These effects are particularly

pronounced in Latino-opportunity districts—those with a sizable Latino population that

were purposefully created to elevate Latino candidates to office. In these districts, having

a lone incumbent is associated with a 19 percentage point decrease in the probability of a

Latino being elected, compared to districts with no incumbents.

Our findings have important implications beyond the specific institution of district

elections. They speak to the limited effectiveness of institutional reform when the actors

who are tasked with its design and implementation are the very same ones whose

behavior the new rules are meant to shape and constrain. Thus, even well-intentioned

efforts can be blunted or repurposed to reinforce the preexisting distribution of power. In

this sense, our results echo Trounstine (2008)’s provocative argument that both political

machines and reform governments exhibit their own pro-incumbent biases. Institutional

change alone is not enough to loosen the grip of entrenched “political monopolies.”

Broadening the coalitions to which government is accountable requires a deeper and

more prolonged political struggle.

Theory and Background

When Institutional Reform Reproduces Power

An active literature in local political economy has made significant contributions to

understanding how variation in institutional forms shapes outcomes in local government.

Sahn (2023), for instance, examines the Progressive Era shift from strong mayor systems

to commission and council-manager forms of government. Contrary to expectations,

they find no effects on municipal spending or revenue. Similarly, Colner (2024)’s com-

prehensive analysis of ranked choice voting (RCV) reforms finds that they fail to induce

high-quality candidate entry or increase the number of non-white or female candidates in

the long run, casting doubt on some of the purported benefits of RCV. Analyzing a wide
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range of institutional arrangements—including elected mayors, the popular initiative,

partisan elections, term limits, and at-large elections—across all U.S. cities and towns

with populations greater than 20,000 people, Tausanovitch and Warshaw (2014) find

surprisingly limited effects of institutional structure on the alignment between voter

preferences and local policy outcomes.

One explanation for these findings is that reform is often implemented by actors who

already occupy positions of power, and thus have both the insider knowledge and the

authority to design institutions to serve their own interests. For instance, Anzia and

Trounstine (2025) show that the early twentieth-century transition from patronage-based

to civil service systems of municipal government was driven not by external pressures,

but by city employees who stood to gain from this shift—especially where they were

organized, had agency, and wielded political influence. Even when reforms are imposed

from the outside, the picture is no different. Recently, public outrage over a leaked tape

exposing racial gerrymandering on the Los Angeles City Council generated momentum

for an ethics overhaul. Yet amendments to the proposed reforms ultimately weakened

the ethics commission, barring it from accepting recommendations directly from voters

without city council approval. “‘The appetite for reform exists from the public, but the

will doesn’t exist from the city council nor from those who may potentially be regulated,’

said Jamie York, whose own nomination to the ethics commission last year was blocked

after a controversial vote” (Mason 2024).

A similar pattern played out when Los Angeles adopted term limits for city coun-

cilmembers in 1991. The result was a revolving door of termed-out officeholders between

Los Angeles and Sacramento, and the creation of small “neighborhood councils” operat-

ing within city council districts. Although these councils are presented as “the closest

form of government to the people,”2 in practice they have served as a training ground for

city councilmembers’ staffers who later run in elections to succeed their former bosses.

2. https://lacity.gov/government/neighborhood-councils.
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As a former Los Angeles city councilmember put it, “Council staffers are currently the

only viable competitors to those coming out of Sacramento... The net result is a dramatic

increase in in-breeding” (Galanter 2013).

Transitioning from At-Large to District-Based City Council Elections

Under the California Voting Rights Act

One of the most consequential recent reforms in U.S. local politics has been the shift from

at-large to district-based elections for city councils, school boards, and other municipal

governments. Under at-large systems, all residents vote for every available seat in first-

past-the-post contests. In contexts of racially polarized voting, this allows a bare racial

majority to capture every seat, leaving even sizable minority communities completely

without representation. Compounding this institutional bias in favor of the majority group,

residential segregation—along with stark racial disparities in local political participation

(Hajnal 2009; Hajnal and Trounstine 2005), especially in low-salience, off-cycle elections

(Anzia 2014)—means that officeholders in at-large systems tend to come from the same

white, affluent neighborhoods and direct resources back to those areas. The result is

structural disinvestment from minority neighborhoods and the entrenchment of racial

inequalities in access to education, infrastructure, and public services.

District-based elections can break this cycle by cleaving local jurisdictions, like cities,

into smaller geographic constituencies, each with its own council seat—including some

districts where the racial minority constitutes a local majority. Typically, only the residents

of a district are permitted to run for that seat. Minority voters are thereby given the

opportunity to elect their “candidates of choice” from their own communities and to

participate meaningfully in local governance. The federal Voting Rights Act of 1965 estab-

lished evidentiary standards for showing that at-large elections are causally responsible

for minority vote dilution, and that district-based elections would be an effective remedy.

In 2001, the California state legislature passed a law reducing these evidentiary standards
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for proving minority vote dilution under at-large systems, thus making it significantly

easier to compel jurisdictions to switch to district elections. Since the passage of the

California Voting Rights Act (CVRA), 167 California cities have undertaken this transition

in their city council elections, either voluntarily or as the result of legal action.

If effective, the CVRA can serve as a nationwide template for improving minority

descriptive representation in local government. To date, eight other states have enacted,

and nine more have proposed, state-level voting rights acts that may include provisions

similar to California’s.3 However, recent scholarship has not viewed the CVRA as

a panacea. While the average effects of conversion from at-large to district elections

on minority representation are generally positive, they are highly heterogeneous and

conditional (Abott and Magazinnik 2020; Collingwood and Long 2021; Hankinson and

Magazinnik 2023). Part of the variation in success may stem from the fact that several

preconditions must be in place for the logic of district elections to function as intended:

a sufficiently large minority population, residential segregation, and racially polarized

voting.4 However, in this paper, we propose and test a novel explanation for the uneven

effectiveness of districting reforms: the strategic behavior of incumbents in shaping

district boundaries to remain in office.

Specifically, we examine how incumbents may influence the design of district maps to

protect their seats and deter the emergence of viable challengers. Although the CVRA

opened the door for more equitable representation, it did not directly address how sitting

incumbents should be treated in the districting process. Federal guidance, as articulated

in Larios v. Cox (2004), permits some degree of incumbent protection in redistricting—

provided that it does not interfere with higher-priority goals like equal population

requirements and the avoidance of racial discrimination. Put more simply, the protection

of incumbents may be considered a legitimate interest so long as it is applied consistently

3. https://www.ncsl.org/elections-and-campaigns/state-voting-rights-acts.
4. These conditions map onto the criteria that constitute the Gingles test, articulated in Thornburg v.

Gingles (1986), which is applied in federal cases against at-large systems—the very criteria that the CVRA
relaxed.
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and does not take precedence over statutory or constitutional mandates. In practice, the

CVRA set up a stark opposition between incumbents and political newcomers: holding

council size constant, creating space for historically underrepresented communities

necessarily requires displacing at least some at-large officeholders.5 As such, the CVRA

presents an ideal opportunity to examine the effectiveness of institutional reform when

implementation is left to those with a vested interest in maintaining the status quo.

Avoidance of Incumbent Pairings in the Design of District Maps

We now turn to a discussion of the precise mechanisms by which incumbents could

shape district maps in their favor. The CVRA led to the spread of district elections

across California, but implementation was highly heterogeneous. Some cities mobilized

internally to convert to districts, be it by city council ordinance or ballot initiative, while

others were spurred by letters from external law firms threatening litigation. While these

demand letters were enough to initiate reform in most cities, a few resisted, resulting in

costly legal fees, unfavorable settlements, and—in every case to date—ultimately being

compelled to move forward with districting.

Further, the drawing of district boundaries varied in process and level of citizen

engagement. Some cities established citizen-led districting commissions to propose

maps for council consideration, while others kept control fully within the city council.

Many cities enlisted the services of demographic consultants promising to lend not only

technical assistance, but assurance that adopted plans would be in compliance with state

and federal law. Despite these procedural variations, incumbent members of at-large

councils almost universally oversaw the districting process, gave input into and debated

proposed plans, and, ultimately, voted to approve the adopted maps.

While there are several ways in which the (re)drawing of district lines may advantage

5. In practice, most cities in California held council size fixed in the transition from at-large to district
elections. While expanding the council can mitigate some tension between incumbents and newcomers, it
still requires incumbents to relinquish some share of power.
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incumbents—including reducing partisan competition and preserving constituencies

intact (Lyons and Galderisi 1995; Makse 2012; Carson, Crespin, and Williamson 2014;

Henderson, Hamel, and Goldzimer 2018)—in this context, the primary focus was on

avoiding incumbent pairings within the same district (Glazer, Grofman, and Robbins

1987; Gaddie and Bullock 2007; Forgette, Garner, and Winkle 2009; Cottrell 2024). In

general, city council elections in California lack meaningful partisan competition: they are

officially nonpartisan, and candidates often minimize or conceal their party identification

when running for office. Moreover, given that incumbency advantages are often amplified

in the low-turnout, low-salience, and low-information context of local elections, the most

significant electoral threat to incumbents typically came from other incumbents.

The avoidance of incumbent pairings was commented on in public hearings and

local media. In the town of Big Bear Lake, meeting minutes show the council acknowl-

edging such protection: “Councilmember Caretto mentioned that the Green Map is

non-polarizing as it has one council member residing in each district” (City Council

Meeting Minutes 12/14/2017). It was also noted by the lone citizen who spoke during

the final public comment period: “Elbridge Gerry would be very proud. This looks like

gerrymandering” (City Council Meeting 1/18/2018).

A common justification for avoiding incumbent pairings was to maintain continuity in

voters’ choices. In Visalia, community-drawn maps paired two incumbents in one district.

The city council’s hired consultant redrew the maps to split them into separate districts

so that “no one was voted off the island” (Doe 2015). When the consultant’s change was

noted by the public, Mayor Steve Nelsen expressed offense at the suggestion that the

council would approve a map that was gerrymandered. Two other councilors supported

the consultant’s maps because the voters had chosen them to serve in office, and therefore

should be able to vote for them again (Doe 2015). In Yucca Valley, the hired consultant

explained that separating incumbents even when they live close together is a standard

practice that “allows the voters to determine if the official should be re-elected, and not
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the demographer” (Staff 2018). Some councilors were less subtle. When it was alleged

that the map in Martinez was designed to protect the four out of five incumbents who

lived downtown, Councilor Mike Ross responded: “If any reasonable person thinks that

we’re gonna sit up here and choose a map that basically takes ourselves out of office...

God bless you, you can have that as your choice” (Heidorn 2023).

Other cities established citizens’ advisory committees—groups of appointed residents

tasked with drawing proposed maps for the council’s consideration—which sometimes

produced maps that ran counter to incumbent protection. In Woodland, the city council

had the option to adopt a map that would preserve all five incumbents’ seats. Instead,

they chose between two alternatives proposed by the advisory committee. The selected

map placed three incumbents in the same district (Kalfsbeek 2018), which ultimately

prompted one incumbent to relocate to an apartment in his friend’s commercial building

in order to run in an open district. “There’s a few haters out there who don’t like the idea

that I’ve moved across the tracks to help another district,” the recently moved incumbent

said. But “if [citizens in District 4] want someone who wants to work hard and bring

up the standard of living... if they want me to work hard for them, then I’m their guy”

(Garrison 2016).

Hypotheses and Contribution

The CVRA presents a novel opportunity to systematically measure the prevalence, predictors,

and consequences of pro-incumbent bias in local districting reforms. These constitute the

three pillars of our analysis.

First, we wish to characterize the extent to which incumbents were protected in cities’

new districting plans by being placed alone in their district. While local media accounts

have documented a handful of higher-profile cases—usually, where attempts at incumbent

protection generated controversy and resistance—our work represents the first attempt to

systematically measure the prevalence of this practice, based not on secondhand accounts

10



but on the adopted plans themselves, across as many cities as possible.

This descriptive groundwork is important in its own right, because there are competing

expectations about the degree of incumbent protection we ought to observe. Of course,

we expect incumbents to use whatever influence they have over the districting process to

enhance their future electoral prospects. However, there are good reasons to temper these

expectations. The CVRA created an environment of unusually high salience, state-level

oversight, and monitoring by interest groups and the media. Larger organizations such

as the American Civil Liberties Union (ACLU) and the Southwest Voter Registration

Education Project (SVREP) were active in threatening cities with litigation and lending

legal and technical assistance to local activists. This statewide network supported, and

was supported by, grassroots coalitions pushing for city council reform from within: in

Anaheim, for instance, legal action against at-large elections was initiated by the ACLU

and José Moreno, an elected member of the city’s School Board and the president of

the Latino community organization Los Amigos of Orange County.6 To the extent that

the CVRA lent a hand to already powerful bottom-up demands for reform, we would

expect at-large incumbents to be more constrained in their ability to enact institutionalized

advantages. Ultimately, the heightened visibility of districting under the CVRA is relevant

for the generalizability of our findings: if we detect incumbent protection here, we can

expect similar dynamics to be pervasive elsewhere.

The issues of top-down monitoring and bottom-up mobilization raise a broader

question: when are incumbents most likely to secure protection more generally? To

answer this—our second research question—we examine a large slate of incumbent- and

city-level predictors of an incumbent being alone in a district in the map adopted by

their city council. We expect incumbent protection to be strongest amid low internal

mobilization and low monitoring. Following Trounstine (2013), we expect cities with

low overall turnout and participation to foster more favorable conditions for incumbents.

6. https://dhkl.law/cases/city-of-anaheim/.
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Cities with smaller, less mobilized nonwhite populations should see greater incumbent

protection. Finally, we expect competitiveness to play an important role, consistent with

previous findings that electoral threat predicts the enactment of laws that protect the

party in power—most notably, that Republican-controlled state legislatures are most likely

to adopt restrictive voter identification laws in states where Republicans are electorally

challenged (Hicks et al. 2015; Grumbach 2022).

Third, and equally importantly, we ask whether incumbent protection undermined the

CVRA’s goal of empowering historically underrepresented communities. The inherently

zero-sum nature of competition between political insiders and newcomers makes this an

ideal setting to evaluate whether the presence of incumbents deterred new candidate entry

and curtailed the electoral success of Latino candidates—particularly in the districts that

were designed to give Latino communities the opportunity to elect their representatives

of choice. This speaks to the question at the heart of our research: whether placing the

implementation of reform in the hands of those already in power erodes the reform’s

ability to deliver meaningful change.

Given the novelty of the situation created by the CVRA, in which more than 160 cities

drew city council district plans for the first time, prior research offers little guidance

for generating predictions. Incumbent pairings are also rare in U.S. House elections,

typically occurring when redistricting coincides with reapportionment (Ashton, Crespin,

and McKee 2022). Still, state and national politics provide some instructive examples.

Redistricting alters the composition of incumbents’ constituencies—sometimes marginally,

but often substantially—thereby introducing electoral uncertainty (Hood and McKee

2013). Challengers strategically exploit this uncertainty, leading to more high-quality

challenger entry at the beginning of redistricting cycles than at the end (Hetherington,

Larson, and Globetti 2003). Although similar dynamics in local government remain

underexplored, Trounstine (2011) finds that the electoral rewards attributable to having

served a term in office in the nonpartisan city council context are comparable to those
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in the U.S. House. Yet there is good reason to expect that the presence of incumbents in

newly drawn districts may exert an even stronger dampening effect on challenger entry

and minority electoral success in this context. After all, the CVRA was enacted precisely

to empower structurally disadvantaged groups who had been unable to compete with

entrenched incumbents in the past.

Data

Districting Plans Our sampling frame is the universe of California cities that have

switched from at-large to district elections under the CVRA—to date, 167 cities. We

obtained city council district shapefiles for over 100 of these cities through online searches

and by contacting local government offices.7 We overlaid these shapefiles on a Census

block-level shapefile from 20178 to associate each block with a city council district in

the adopted map and economic, political, and demographic indicators from the U.S.

Census and the California Statewide Database.9 The resulting standardized and enhanced

shapefiles are used as the basis of our districting simulations.10

Incumbents For each of the cities for which we obtained a shapefile, we identified the

members of the last city council in office before the city’s first district election. To identify

these incumbents, we searched through city council minutes. To the best of our ability,

we located minutes from the meeting in which a city adopted a resolution declaring the

city’s intention to switch to district elections or enacted an ordinance to switch to district

elections and implement a corresponding map. All council members listed in these

7. Of the remaining cities, many have announced their intention to switch to districts but have not
adopted a map yet; a handful of others did not respond to our requests or were unable to provide a digital
shapefile.

8. Obtained from: https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2017&layergroup=
Blocks+%282010%29.

9. https://statewidedatabase.org/.
10. See Appendix A.1 for more information on our shapefile construction process.
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minutes are considered to be incumbents.11 To construct our incumbents dataset, we then

drew these candidates’ records from the California Elections Data Archive (CEDA),12

usually from the two at-large elections prior to the first district election.

Our approach requires having accurate information about the residential location

of each incumbent at precisely the time the city transitioned from at-large to district

elections. Given our interest in how a district plan accommodates the residential locations

of all incumbents, missing data on even one incumbent’s location makes it challenging to

draw conclusions about the entire plan of a city. We therefore invested considerable effort

in compiling complete and accurate data on all incumbents’ residential locations as well

as their demographic and political characteristics.

We began by searching for incumbents’ addresses within voter file records compiled

by the commercial data vendor L2, matching the records as closely as possible to the

year each city switched to district elections. We also used demographic records collected

by de Benedictis-Kessner et al. (2023). Together, these sources provided much of our

data on incumbents’ residential addresses, race/ethnicity, gender, and party affiliation. If

any of these values could not be found within these data sources, we turned to internet

searches to fill in the missing information, consulting local media coverage, financial

disclosures, and candidates’ personal websites and social media profiles.13 In all, we

were able to assemble complete records for the councils of 87 cities.14 This sample is

highly representative of the universe of 167 California cities that have switched to district

elections along demographic and economic dimensions.15

We used incumbents’ addresses to assign them to a Census block and to a district in

the adopted plan. To obtain a richer set of incumbent-level characteristics, we associated

11. See Appendix A.2 for more information on our process for identifying incumbents. We provide an
example from South San Francisco of the council minutes we collected in Appendix Figure A-1.

12. https://scholars.csus.edu/esploro/outputs/dataset/California-Elections-Data-Archive-CEDA/
99257830890201671.

13. See Appendix A.2 for more information on how we collected demographic data for each incumbent
candidate serving in the cities included in this study.

14. Please see Appendix Table B-1 for a summary of the data loss over our dataset construction process.
15. Please see Appendix Table B-2 for a comparison.
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their residential locations with the block group-level homeownership rate, proportion

white, and median income from the Census. Given the homogeneous composition of

most block groups in the cities in our sample, these likely serve as good proxies for

incumbents’ own characteristics, but in any case are informative about the neighborhoods

incumbents come from and represent.16

City Characteristics We also collected a set of relevant city-level characteristics, includ-

ing the total population of each city as well as the citizen voting-age population (CVAP)

in total and by racial or ethnic group. We computed the median household income as the

population-weighted median over the tracts in our shapefiles.

To measure inequality in the distribution of income across census tracts within each

city, we computed a population-weighted Gini index of median household income.

To measure the degree of residential segregation within each city, we computed the

dissimilarity index based on the distribution of white and non-white CVAP across tracts.

This statistic is interpretable as the proportion of white residents that would need to swap

tracts with non-white residents in order to achieve a uniform distribution across tracts.17

Finally, we computed characteristics related to electoral competition and racial repre-

sentation at the city level. Using our incumbents dataset, we calculated the proportion of

the at-large incumbent council that is white. We also computed the degree of competitive-

ness in each city-election as the effective number of candidates (Laakso and Taagepera

1979) divided by the number of seats up for election; we then took the mean of this

quantity over the four elections prior to the first district election in each city. We also

computed the average turnout rate over the same four elections, defined as the number of

voters in an election divided by total CVAP. We defined a binary indicator for off-cycle

elections, equal to 1 if fewer than three of these four elections took place on the same

date as a presidential or midterm election (in November of even-numbered years)—an

16. Please see Appendix Table B-3 for a summary of our incumbent characteristics compared to all
California voters.

17. Please see Appendix A.3 for formal definitions of these variables.
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important predictor of turnout, voter information, and competitiveness at the local level

(Anzia 2014).

District Characteristics Our analysis also includes post-districting electoral outcomes at

the level of a city council district election within a city. Based on our incumbent data, we

coded how many at-large incumbents live within each district. We also computed the

number of new candidates who ran within each district (not including the incumbents) in

all district elections up to and including 2020.18 We used a Bayesian prediction procedure

(Khanna et al. 2024) to code the probability that each candidate is Latino based on their

name and location, then used these probabilities to compute the expected number of

Latino candidates as well as Latino winners in every post-districting election. Finally, we

identified whether each at-large incumbent ran again in a district election, and whether

they won reelection, using CEDA data. Using our city shapefiles, we also computed

relevant district-level controls: the proportion of CVAP that is Hispanic and white, the

proportion of voters who are Democrats, and median income.

Methodology

Measuring Incumbent Protection The first task at hand is to characterize the degree to

which incumbents are protected under a given districting plan. We measure incumbent

protection at two levels: the incumbent and the districting plan. At the incumbent level,

we define Alonec,i, a binary indicator that takes a value of “1” if incumbent i in city

c is assigned to their own district and “0” if they are assigned to a district with any

number of other incumbents. At the level of a plan, we define Proportion Alonec as the

total number of incumbents in city c assigned to their own district, divided by the total

number of incumbents sitting on the council when city c switched to district elections.

This variable ranges from 0 (all incumbents sharing their district with at least one other

18. After 2020, there was another redistricting cycle and the plan may have shifted.
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incumbent) to 1 (every incumbent alone in their own district).

Using an Automated Districting Simulator to Detect Incumbent Protection A central

interest of this project is how incumbents exercise political influence over the favorability

of districting plans for their own electoral fortunes. However, a number of additional

factors may also shape and constrain these outcomes. Districting plans must satisfy

federally mandated standards of compactness, population parity, and contiguity. These

requirements interact with each city’s unique physical shape, geography, and spatial

distribution of both voters and incumbent councilmembers to limit the universe of

possible plans available to local decisionmakers.

To properly assess how favorable the chosen maps were to incumbents within each

city’s own feasible universe, we conduct a set of redistricting simulations using the

automated redistricting simulator developed by Fifield et al. (2020) and deployed in the

redist package for R (Kenny et al. 2021). The simulator implements a Sequential Monte

Carlo (SMC) algorithm (McCartan et al. 2022), which we apply to the prepared shapefiles

from each of the 87 cities in which we were able to identify all incumbents’ residential

locations. We fix the number of districts in the simulations to be the number of districts

in the adopted map. We generate 40,000 draws from the target distribution of districting

plans, where a draw is an assignment of Census blocks to city council districts.19

When using algorithmic districting approaches, it is important to clarify what the

distribution of simulated plans represents (Tam Cho and Cain 2024). The algorithm

we use generates a “race-neutral baseline”: it adheres to binding constraints imposed

by federal law but does not account for optional criteria such as the preservation of

“communities of interest”—defined by state law as any “population that shares common

social or economic interests that should be included within a single supervisorial district

for purposes of its effective and fair representation.”20 While some cities prioritized this

19. See Appendix C for more information on the SMC algorithm and our implementation. See Appendix
E for simulation diagnostics.

20. CA SB594, https://legiscan.com/CA/text/SB594/id/2434655.
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Figure 1: Avoidance of Incumbent Pairings in South Pasadena, CA. On the left, district
lines adopted by the city council are displayed with shading identifying each district and
black dots indicating where each of the 5 incumbents reside. On the right, district lines
from a “representative” simulated plan are shown.

goal, we treat this as an endogenous political choice rather than an exogenous constraint

on their choice sets. Accordingly, the simulation distribution should be understood as

reflecting the broad universe of cities’ feasible options, rather than the subset of plans

they would most likely adopt given additional, context-specific considerations.

Crucially, the simulator is also blind to incumbents’ locations. This allows us to

compare the degree of incumbent protection observed in an enacted plan, as measured by

Alonei and Proportion Alonec,i, to the overall distribution of the same metrics over the

city’s feasible alternatives. When the enacted plan lands in a very high percentile of the

city’s simulation distribution of these quantities, we take this as circumstantial evidence

that the map was intentionally constructed with the aim of protecting incumbents.

To illustrate our approach, Figure 1 displays the district lines adopted by South

Pasadena, CA on the left; on the right is an example of a simulated plan for the same

city. The residential locations of the five incumbents are indicated with black dots. In the

enacted plan on the left, all five incumbents are alone in their district (with some apparent

care taken to draw one of the incumbents into District 1). Thus, for each incumbent,

Alonec,i equals 1 and for the city’s enacted plan, Proportion Alonec equals 1.00.

18



In the simulated plan shown on the right, only the incumbent in District 5 is assigned

to their own district, two incumbents are paired in District 1, two incumbents are paired

in District 4, and no incumbents are assigned to Districts 2 or 3. Thus, in this plan,

Proportion Alonec is 0.2 and only for the incumbent in District 5 does Alonec,i take a

value of 1. For all other incumbents, Alonec,i equals 0. This plan is a “representative”

draw from the distribution of feasible plans for South Pasadena in the sense that across

the city’s 40,000 simulated plans, the median Proportion Alonec value is 0.2—meaning

only one of the five incumbents is alone in their district.

Explaining Incumbent Protection After estimating the overall prevalence of incumbent

protection in our sample of cities, we want to draw some general conclusions about

the characteristics that predict which incumbents and which cities are likely to engage

in protection. To do so, we estimate the following linear probability model on our

incumbent-level dataset:

Alonec,i = β0 + β1Simulated Alone Probabilityc,i + Xc,iγ + Zcζ + εc,i (1)

where Alonec,i is our binary indicator of whether city c’s enacted plan places incumbent

i alone in their district. Within this model, we control for Simulated Alone Probabilityc,i,

which is the proportion of city c’s simulated plans in which incumbent i is placed alone

in a district. Thus, a coefficient from this model may be interpreted as the average effect

of a given covariate on the probability that an incumbent ends up alone in their district,

controlling for their baseline likelihood of being alone due to all of the structural factors

that shape city c’s districting process. In other words, it plausibly represents the effect of

a covariate on the component of incumbent protection that is driven by political discretion,

rather than by luck of one’s residential location vis-à-vis the city’s geography.

Our vector of incumbent-level covariates Xc,i includes binary indicators for whether

they are white, Republican, and female, as well as their block group’s homeownership
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rate, proportion white, and logged median income. We include a vector of city-level

covariates Zc, which includes logged population, logged median household income,

residential segregation, income inequality, proportion of the incumbent council that

is white, competitiveness and turnout in the last four pre-districting elections, and a

binary indicator for whether these elections were held off-cycle. We center and scale our

measures of competitiveness and turnout to have mean 0, standard deviation 1 for ease

of interpretability.

Our model includes two interactions. First, we interact whether the incumbent is white

with the proportion of the at-large incumbent council that is white to detect whether white

incumbents are better able to secure protection on white-dominated councils. Second,

we interact our off-cycle elections indicator with the turnout rate to ensure that we are

making apples-to-apples comparisons, since turnout in local elections is systematically

much higher when they coincide with elections for national office.

Measuring the Consequences of Incumbent Protection Next, we assess whether in-

cumbents who are alone in their districts are indeed more likely to remain in office than

those who are paired with other incumbents. We also estimate the effects of avoiding

incumbent pairings on the diversity and openness of councils to new candidates.

Our first model, estimated on the same incumbent-level dataset used previously, is:

Yc,i = β0 + β1Alonec,i + β2Simulated Alone Probabilityc,i + Xc,iγ + Zcζ + εc,i (2)

Here, Yc,i represents two binary quantities of interest: whether incumbent i in city c

kept their seat on council post-districting, and whether they ran for reelection at the

next available opportunity. The key independent variable of interest is whether the

incumbent is alone in their district, Alonec,i, and we include as a control the probability

the incumbent is alone in their district over the city’s simulation distribution. This allows

us to interpret the coefficient β1 as the effect of being placed alone in a district on the
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incumbent’s post-districting outcomes, accounting for their baseline likelihood of being

alone in a district due to structural factors; again, this strategy isolates the effect of the

discretionary or political component of incumbent protection. We also include the same

vectors of incumbent- and city-level controls from the previous analysis, Xc,i and Zc.

For our final analysis, we shift the unit of observation to the city–district level in order

to observe how the practice of incumbent protection shapes not just the incumbent’s

own fate, but broader electoral competition and council composition after the districting

reform. We have three outcomes of interest: the number of new candidates vying for a

district seat (not including the incumbents); the number of Latino candidates vying for a

seat; and whether a Latino candidate is elected. We estimate the model:

Yc,d = β0 + β1One Incumbentc,d + β2Two or More Incumbentsc,d +

β3Prop. of CVAP, Hispanicc,d + β4Prop. of CVAP, Whitec,d + Zcζ + εc,d

(3)

where One Incumbentc,d and Two or More Incumbentsc,d are binary indicators for

whether district d in city c has a lone incumbent and two or more incumbents, respectively;

the omitted category is districts with zero incumbents. We include two district-level

controls—the proportion of CVAP that is white and Hispanic—as well as the vector of

city characteristics Zc that we have been using throughout.

A Note on Measurement Error Given the manageable number of incumbents in our

sample, it was feasible for our research team to manually check every residential location

and to validate it across a variety of sources, including media accounts, online records,

California voter files, and CEDA data. For all incumbents who ran again post-districting

(43% of our sample), we use the district shapefiles to check whether their geolocations

indeed fall within the districts in which they subsequently ran according to CEDA. While

this exercise uncovered a handful of inconsistencies, which we corrected, it revealed that

our process yields accurate addresses in the vast majority of cases, which also gives us a
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high degree of confidence in our data for the 57% of incumbents who did not run again.

Anecdotally, we know that incumbents may have multiple addresses, including ones

they may keep exclusively for the purposes of running in a particular district. Our

approach accounts for this strategy: since we ensure that the addresses we record for

incumbents who run again line up with the districts in which they actually run, we are

likely to record this second address in those cases, and the incumbent is likely to be

coded alone in those districts.

If there are inaccuracies in our data, they probably attenuate our estimates. If incum-

bent protection is based on the true address but we record a false address in a different

part of the city, then our Alonec,i and Proportion Alonec variables are likely to be closer

to zero than reality on average, since the false address is likelier than not to fall in a

district with another incumbent. Thus, one can interpret our estimates as lower bounds

of the extent of incumbent protection in this setting.

Results

Incumbent Protection Is Clearly Detectable and Pervasive

Our first result is that cities overwhelmingly and incontrovertibly protected incumbents

by assigning them to their own districts. Comparing the proportion of a city’s at-large

incumbents who ended up in their own districts in the enacted plan, Proportion Alonec,

to the city’s simulation distribution of the same metric, we find that more than half of cities

(54%) achieved the maximum degree of incumbent protection that was technically feasible. In

other words, for each of these 47 out of 87 cities, not one of the 40,000 simulated plans

could place more incumbents alone in a district than the enacted plan. For an additional

8 cities (9%), the enacted plan fell in the 99th percentile of the simulation distribution,

meaning that the observed degree of incumbent protection was only exceeded by a small

number of outlying simulated plans. Given that cities were not usually working with the
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kind of sophisticated software that would help them find these outlying possibilities, it

is reasonable to assume that these 8 cities were also maximizing incumbent protection

under technical constraints.

Figure 2 shows a histogram of the percentiles in cities’ simulation distributions of

Proportion Alonec in which the enacted plans fell, with a red dashed line at the median

(100th percentile) and a blue dotted line at the mean (89th percentile). As we show in

Appendix Figure D-2, there do not seem to be any geographic patterns in incumbent

protection. From the Bay Area to southern California, cities avoided incumbent pairings

to a far greater extent than would be expected by random chance.

Figure 2: Location of the Adopted Plan’s Proportion Alonec in the City’s Simulation
Distribution of Proportion Alonec. This histogram shows the distribution of percentiles
of Proportion Alonec within cities’ own simulation distributions of the same metric,
defined as the number of incumbents assigned to their own district divided by the
number of incumbents on the council at the time the city switched to district elections.
Red dashed line is at the median (100) and blue dotted line is at the mean (89).

Figure 3 displays the simulation distributions of Proportion Alonec in greater detail.

Thin black lines indicate the entire range while thick black lines indicate the inter-

quartile range. Black points represent the median in the simulation distribution while

red diamonds indicate the percentile of the simulation distribution in which the enacted

plan’s Proportion Alonec value lands; this percentile is also written at right. It is evident

that most cities are not highly constrained by geography when drawing maps to protect

incumbents. For 53 of the 87 cities (61%), the simulation distributions span the entire

possible range of Proportion Alonec from 0 to 1.

23



Figure 3: Simulation Distributions of Proportion Alonec. Summary statistics of the
distributions of Proportion Alonec over simulated plans in every city, defined as the
number of incumbents assigned to their own district divided by the number of incumbents
on the council at the time the city switched to district elections. Thin black lines span the
range of the simulation distribution. Thick black lines span the 25th to 75th percentiles
of the simulation distribution—if omitted, this indicates that the range collapses to
the median value. Black points represent the median of the simulation distribution.
Red diamonds represent the value for the enacted plan. Percentile of the simulation
distribution in which the enacted plan falls is shown on the right.
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It is no wonder, then, that incumbent protection could be easily achieved while

remaining in compliance with not only federally mandated standards such as contiguity

and compactness, but the CVRA’s target of maximizing the number of districts in which

the minority voting bloc is sufficiently large to elect its candidate of choice. In Appendix

Figure D-3, we show there is no systematic trade-off between protecting incumbents and

creating majority-minority districts: most cities that maximized one metric within their

own simulation distributions were simultaneously able to perform very highly on the

other. This flexibility is due in large part to the fact that cities were drawing district maps

for the first time, with no status quo constraining their choices. It also explains how such

a widespread practice could fly under the radar in this relatively high-salience, externally

monitored setting: it did not interfere—at least on paper—with the reform’s stated goals.

However, as our final analysis shows, incumbent protection did, ultimately, act against

the aims of the reform in practice: it deterred candidate entry and minority officeholding

in precisely the districts that were meant to gain a seat at the table.

When Are Incumbents Protected?

We now turn to the question of which incumbents and which cities are most likely to

engage in incumbent protection. Table 1 presents estimates from Equation 1. Unsurpris-

ingly, the main predictor of being alone in a district is the probability of being alone

over simulated plans—the structural propensity of the incumbent to end up alone given

their residential location and the city’s geography. Although this effect is not particularly

interesting in its own right, it highlights the importance of controlling for these structural

factors to isolate the discretionary component of incumbent protection—especially insofar

as they are correlated with other, substantively meaningful characteristics.21

Interestingly, incumbent-level covariates have no explanatory value. Rather, certain

21. To underscore the importance of controlling for structural factors that may explain why in-
cumbent candidates avoid pairings, we present estimates from a model that does not include
Simulated Alone Probabilityc,i as a covariate for comparison in Appendix Table D-4.
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Table 1: Predictors of Enacted Incumbency Advantage

(1)
Incumbent: Simulated Alone Probability 0.744***

(0.066)
Incumbent: White −0.133

(0.180)
Incumbent: Republican 0.068

(0.045)
Incumbent: Female 0.028

(0.045)
Incumbent’s block group: Homeownership Rate 0.092

(0.117)
Incumbent’s block group: Prop. White 0.023

(0.118)
Incumbent’s block group: log(Median Income) −0.003

(0.064)
City: log(Population) −0.216***

(0.037)
City: log(Median Household Income) 0.099

(0.108)
City: Residential Segregation −0.370

(0.284)
City: Gini coefficient 0.393

(0.500)
City: Prop. White of Last At-large Council 0.076

(0.224)
City: Prop. of CVAP, White 0.405+

(0.209)
City: sd(Pre-Switch Electoral Competition) 0.057*

(0.025)
City: sd(Pre-Switch Turnout Rate) −0.181***

(0.040)
City: Off-cycle city council elections −0.116

(0.107)
Incumbent: White x City: Prop. White of Last At-large Council −0.043

(0.247)
City: Off-cycle elections x City: sd(Pre-Switch Turnout Rate) 0.108

(0.075)
(Intercept) 1.479

(0.910)
N 415
R2 0.363

+ p <0.1, * p <0.05, ** p <0.01, *** p <0.001
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types of cities are likelier than others to engage in incumbent protection: smaller, whiter

cities with historically lower turnout, though slightly more competitive elections. We in-

terpret these findings as evidence of motive and opportunity. Less populous municipalities

with smaller and less mobilized minority populations were less likely to face homegrown

demands for institutional change and more likely to have the reform externally imposed

on them by demand letters from lawyers operating statewide campaigns.22 For them,

there was a particularly strong motivation to retain incumbents, who viewed themselves

as the internally supported and democratically legitimate candidates. This motivation was

strengthened by electoral competition: a one standard-deviation increase in the number of

effective candidates per seat is associated with a 0.06-unit increase in the probability of an

incumbent being alone in a district (p < 0.05). When incumbent candidates expect to face

more serious challengers, they have a more pressing interest in securing institutionalized

advantages.

While these factors furnish motive, low voter turnout presents opportunity. A one

standard-deviation increase in turnout is associated with a 0.18-unit decrease in the

probability of being alone in a district (p < 0.001) among cities with on-cycle elections—

the vast majority of cities in our sample.23 When voters are paying attention, incumbent

candidates are not as willing or able to use the districting process to their electoral

advantage.

22. For instance, the city of Big Bear Lake was spurred to reform by a demand letter from Kevin Shenkman,
a lawyer who has become widely known for threatening cities with litigation to get them to switch to
district elections. As reported by the San Francisco Chronicle, “The city of Big Bear Lake folded too—angrily.
Shenkman sent a demand letter to the tiny ski town of 3,000 voters in 2017. On one page, he switched
mid-paragraph to an allegation about ‘the Victorville City Council,’ a different entity that had received a
letter from him two weeks earlier. ’Your letter... appears to be taken from a much overused template,’ Big
Bear replied. The city enclosed a $30,000 check but noted it was ‘making this payment under protest.’”

23. Somewhat unexpectedly, this effect appears to be weaker among cities with off-cycle elections, though
the interaction between off-cycle elections and voter turnout is not statistically significant.
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Incumbent Protection Deters Candidate Entry and Erodes Diversity on

Councils

We have shown that cities consistently designed districting plans to safeguard incumbents,

and that doing so was neither technically challenging nor at odds with creating minority-

opportunity districts. Nevertheless, creating space to accommodate incumbents had

clear downstream electoral consequences: it deterred competition, crowded out political

newcomers, and interfered with Latinos’ ability to win seats, even in Latino-opportunity

districts.

Table 2: Effect of Districting on Incumbents’ Reelection Prospects

Kept Seat Ran for Reelection

Incumbent: Alone in Adopted Map 0.361*** 0.379***
(0.068) (0.067)

Incumbent: Simulated Alone Probability −0.215* −0.159
(0.105) (0.105)

(Intercept) −0.588 −1.332
(1.233) (1.227)

N 325 325
R2 0.162 0.177

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. See Table D-5 for full results.

We first report results from estimating Equation 2 in Table 2: the effect of being drawn

into one’s own district on an incumbent’s subsequent electoral fortunes.24 In Column 1,

we see that being alone is associated with a 36 percentage point increase in the probability

of retaining office in the first post-districting election, compared to being paired with at

least one other incumbent. The effect on running again is barely higher, at 38 percentage

points as shown in Column 2, suggesting that the vast majority of protected incumbents

who run again post-districting win their seat. Of course, this relationship is endogenous:

incumbents who intend to stay in office are motivated to influence the plan to protect

24. Our sample size is slightly reduced in this analysis compared to Table 1 because we exclude incumbents
who get drawn into a district that does not then hold an election by 2020, the last year for which we have
council election returns (and the end of the redistricting cycle). For these incumbents, we cannot observe
our outcomes of interest within our data.
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their seat, while those who intend to retire may willingly pair up with another incumbent;

moreover, politically savvy incumbents are better able to both influence the plan and,

independently, to win elections. We therefore interpret the strong association between

protection and reelection not as a causal effect, but as compelling evidence that our

conceptualization and measurement of incumbent protection is working as expected:

incumbents who are alone in districts are likely to seek reelection, and to benefit from

this institutionalized advantage.

Our final analysis assesses the costs that incumbent protection imposes on the electoral

success of newcomers and, ultimately, council diversity. In Table 3, we present results from

estimating Equation 3. As shown in Column 1, compared to districts without incumbents,

those with one incumbent have, on average, approximately one fewer candidate per seat.

They also attract 0.32 fewer Latino candidates (Column 2) and experience a 0.10-point

decline in the probability of a Latino winner (Column 3). Districts with two or more

incumbents exhibit similar, albeit noisier, effects, likely due to the relatively small number

of such districts in the sample.

How counterproductive is this to the CVRA’s aim of increasing Latino representation?

One might imagine a scenario in which incumbents are elected to represent the whiter

and wealthier districts in which they tend to live, while newly drawn Latino-opportunity

districts—which are less likely to host incumbents in the first place—provide space for

new candidates. This would, in theory, allow the system to balance the preservation

of experienced officeholders with the creation of opportunities for greater descriptive

representation. Unfortunately, the data do not support this view. In Table 4, we re-estimate

Equation 3 on a restricted sample of Latino-opportunity districts, defined as those with at

least 30% Latino CVAP. In these districts, the negative effects of incumbent protection are

especially pronounced. Districts with one incumbent in them are 19 percentage points

less likely than districts with no incumbents to successfully elect a Latino candidate,

controlling for the ethnic composition of the district and our full set of city-level covariates
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Table 3: Effect of Incumbent Protection on Post-Districting Election Outcomes

New cands Lat. cands Lat. elected

1 Incumbent −0.969*** −0.318** −0.097*
(0.173) (0.102) (0.048)

2+ Incumbents −0.908*** −0.323* −0.062
(0.220) (0.130) (0.060)

District: Prop. of CVAP, Hispanic 2.340+ 2.266** 1.193***
(1.296) (0.765) (0.356)

District: Prop. of CVAP, White 2.842** 0.730 0.246
(1.088) (0.643) (0.299)

District: Prop. of voters, Democrats −0.100 −0.290 0.147
(0.769) (0.454) (0.211)

District: log(Median household income) 0.064 0.142 0.103
(0.409) (0.242) (0.113)

City: Homeownership Rate −0.250 −0.218 −0.267
(0.866) (0.511) (0.238)

City: log(Population) 0.364** 0.116 −0.038
(0.123) (0.073) (0.034)

City: log(Median Household Income) 0.007 −0.031 0.083
(0.493) (0.291) (0.136)

City: Residential Segregation −0.735 −0.259 −0.059
(0.935) (0.552) (0.257)

City: Gini coefficient −0.619 −0.289 0.425
(1.680) (0.992) (0.462)

City: Prop. White of Last At-large Council 0.419 −0.274 −0.090
(0.380) (0.224) (0.104)

City: Prop. of CVAP, Hispanic −1.674 0.810 0.150
(1.531) (0.904) (0.421)

City: Prop. of CVAP, White −3.223* −0.126 0.246
(1.281) (0.757) (0.352)

City: sd(Pre-Switch Electoral Competition) 0.150* 0.088* 0.026
(0.072) (0.043) (0.020)

City: sd(Pre-Switch Turnout Rate) 0.035 0.057 −0.055
(0.140) (0.083) (0.039)

City: Off-cycle city council elections 0.754* 0.523* 0.046
(0.382) (0.226) (0.105)

City: Off-cycle elections x City: sd(Pre-Switch Turnout Rate) 0.466+ 0.140 0.045
(0.261) (0.154) (0.072)

(Intercept) −2.041 −2.076 −1.775+
(3.410) (2.014) (0.937)

N 359 359 359
R2 0.219 0.315 0.263

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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Table 4: Effect of Incumbent Protection on Post-Districting Election Outcomes, Latino
Opportunity Districts

New cands Lat. cands Lat. elected

1 Incumbent −0.741** −0.354+ −0.188*
(0.259) (0.190) (0.080)

2+ Incumbents −0.641+ −0.357 −0.172
(0.373) (0.274) (0.115)

District: Prop. of CVAP, Hispanic 2.176 3.619* 1.351+
(2.322) (1.704) (0.716)

District: Prop. of CVAP, White 2.234 1.271 −0.140
(2.396) (1.758) (0.739)

(Intercept) −2.766 −2.622 0.128
(6.761) (4.961) (2.084)

N 145 145 145
R2 0.235 0.282 0.280

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

(Column 3); they also see a nearly 1-candidate decrease in all candidates and a 0.32-unit

decrease in Latino candidates.

Discussion

Leveraging the CVRA, we have shown how those in power can stymie reform and protect

the status quo. When switching to district elections, most city councils in our sample

chose maps which would avoid incumbent pairings, maximizing the number of councilors

with their own district. Incumbent protection was especially prominent in cities with

more competitive elections (motive), yet lower voter turnout (opportunity). This strategy

undermined the goal of expanding representation by securing favorable reelection odds

for incumbents and deterring challengers. We find that having a lone incumbent in a

district discouraged candidate entry and depressed Latino electoral success, even in the

opportunity districts specifically drawn to advance Latino representation.

These electoral consequences add nuance to how incumbent protection should be

evaluated against competing objectives. In the eyes of the law, drawing maps to separate
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incumbents may be a legitimate interest so long as it is applied consistently and does not

take precedence over other statutory or constitutional mandates. Analyzing a large sample

of newly drawn plans, we find that these requirements can easily be met: cities were

able to draw maps maximizing both incumbent protection and the creation of majority-

minority districts. When taking real-world electoral consequences into account, however,

we show that a map that silos a current council member into a Latino opportunity district

is a map that protects incumbents at the expense of minority representation.

The ability of incumbents to influence map-making may help explain the conditional

success of district-based reforms. Past research emphasizes the structural preconditions

for districts to advance representation; our novel analysis of the map-making process

highlights the additional importance of internal mobilization. For example, community

organizations may be key in elevating the stakes of the moment and driving residents

to participate in the districting process. While some cities saw organized groups flood

council meetings in the pursuit of representation, others were quiet. Across five public

hearings, only four Big Bear Lake residents appeared and commented on the drawing

of district maps. In turn, it is not surprising that the council passed a map in the 100th

percentile of Proportion Alonec. While we find that low turnout elections increase the

likelihood of incumbent protection, future research should closely examine the role of

community groups and coalitions in the districting process.

Our analysis adds incumbent protection and its electoral consequences to the already

substantial list of challenges of using district elections to improve racial representation.

Even if the process were managed by a citizen-led, independent districting commission,

the reform requires both a large minority population and one that is sufficiently segregated

(Abott and Magazinnik 2020)—presenting barriers for collective goods provision and inter-

group cooperation. Even when single member districts are successful at changing the

composition of the council, they tend to foster local deference, threatening the provision

of essential amenities and services with locally concentrated costs such as multifamily
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housing (Hankinson and Magazinnik 2023). Given these challenges, researchers and

reformers should explore proportional representation as a promising alternative that

neither relies on the maintenance of residential segregation nor affords incumbents the

same degree of control over outcomes.

The nature of reform is to disrupt the status quo. Yet placing control over any reform in

the hands of incumbents is likely to limit its effectiveness, ultimately eroding democratic

legitimacy. When voters observe the ongoing lack of minority representation on councils

or simply see councilors openly prioritize protecting each other’s seats, the result is a

loss of public trust. Avoiding this fate, and ensuring that electoral reform succeeds in

producing broadly representative and accountable government, requires not only new

rules, but active public participation, interest group engagement, and alternative models

that better insulate outcomes from incumbents’ influence.
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A Data Construction

A.1 Shapefile Construction

Here, we outline the data construction process by which we prepared city shapefiles for
districting simulation. As a baseline, we began with the 2017 TIGER/Line Shapefile for
the state of California at the Census block level.1 We used Census blocks because this
seems to be the unit that most cities used for district assignment. Then, we associated
each block with a set of demographic, economic, and political variables, described in
detail below. Finally, we intersected each of the 87 city council district shapefiles in
our possession with this statewide block-level shapefile. This generated 87 block-level
shapefiles—one for each city—mapping Census blocks (with covariates) to city council
districts. Throughout our analyses, if block group- or district-level measures for any of
the following variables are included, they are produced by aggregating block-level values
to the corresponding level of geographic abstraction.

Variables:

1. Housing Data. We collected the following variables from the 2010 Decennial Census:

1. CB Variable ID H003002, the total number of housing units in which a person or
group of persons is living at the time of the interview, or if the occupants are only
temporarily absent, as for example, on vacation;

2. CB Variable ID H014002, the total number of housing units where the owner or
co-owner lives in the unit, even if it is mortgaged or not fully paid for.

We computed the homeownership rate as the number of occupied households that are
owned (H014002) divided by the total number of occupied housing units (H003002).

2. Voting-Age Population. We collected block-level total population from the 2010
Decennial Census (CB Variable ID P001001). In addition, we collected the following
variables related to citizen voting-age population (CVAP) from the Redistricting Database
for the State of California (“Statewide Database”)2:

1. Total citizen voting-age population

2. Black or African American (alone) citizen voting-age population

3. Asian (alone) citizen voting-age population

4. Hispanic or Latino citizen voting-age population

1. Obtained from: https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2017&layergroup=
Blocks+%282010%29.

2. Accessed at: https://statewidedatabase.org/. We used CVAP estimates from Statewide Database
instead of the Census Bureau because the Census has only block group-level estimates, whereas Statewide
Database provides block-level estimates.
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5. Not Hispanic or Latino citizen voting-age population

6. White citizen voting-age population

Because cities districted in different years, we pulled these CVAP estimates from different
time periods for each city. In order to approximate as closely as possible the data cities
were working with at the time that they districted, we selected 5-year estimates ending 3
years prior to the year of the first election under the newly adopted districting plan. For
example, if the year of first election was 2018, we would use 2011–2015 estimates. If the
year of first district election was 2012 or earlier, we used 2006–2010 estimates, as this was
the closest available option.

3. Income. We collected block group-level median household income from the Census
American Community Survey (ACS) (CB Variable ID B19013_001). We assigned to each
block the value from its block group, as that was the lowest level of aggregation for which
data was available. We chose the ACS time period for each city according to the same
approach outlined for voting-age population, above.

4. Partisanship. Here, we wish to compute two block-level variables estimated at the
time of a city’s first district election: (1) a count of Democratic voters reasonably robust to
changes in turnout between elections and (2) the total number of registered voters.

To do so, we collected partisanship and registration data from the general election files
from Statewide Database. For each city, we used data from the 6 general elections prior
to the year of first district election. For presidential election years (2004, 2008, 2012, 2016,
2020), we collected the number of votes cast for the Democratic presidential candidate; for
midterm election years (2002, 2006, 2010, 2014, 2018), we collected the number of votes
cast for the Democratic gubernatorial candidate.

A challenge of working with these data is translating them across geographies: voter
registration and partisanship are reported at the SR precinct level, whereas we require
data at the block level. To get around this, we downloaded a crosswalk file between SR
precincts and 2010 Census blocks from Statewide Database, which provides the percentage
of an SR precinct that falls within a given Census block.3 To convert SR precinct-level
data to block-level estimates, we joined the electoral data with the crosswalk file and
computed estimates of the number of Democratic votes and registered voters each Census
block contributes to the SR total. We then aggregated all block-level contributions by their
Census block IDs.

Finally, to compute the block-level estimated count of Democratic voters, we calculated
the sum of block-level estimates of Democratic votes cast in the past 6 general elections
(both presidential and midterm), divided by the sum of block-level estimates of the
number of overall votes in the past 6 general elections, multiplied by the total number
of registered voters in the general election year immediately following the year of first
district elections.

3. See documentation here: https://statewidedatabase.org/d10/Creating%20CA%20Official%
20Redistricting%20Database.pdf.
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Figure A-1: City Council Minutes from South San Francisco, CA. From the 7/11/2018
meeting of the city council, Mayor Normandy, Mayor Pro Tern Matsumoto, Councilmem-
ber Garbarino, and Councilmember Gupta are considered incumbent members for the
purposes of districting.

Shapefile Preparation:
After merging the above variables onto our baseline block-level shapefile for the state

of California, we intersected this file with each of our 87 city council district shapefiles.
This process produced, for each city, a block-level shapefile with both a vector of city
council district assignments and the complete set of variables described above.

As a final step in preparation for districting simulation, we checked that all blocks were
contiguous, as the simulation requires contiguous graphs. For disconnected blocks or
components, we manually assigned nearest neighbors, determined by visual inspection.

A.2 Incumbent Identification

To identify incumbent city council members, we searched through city council minutes
for each of the 87 cities included in this study. Our primary goal was to find minutes
from the meeting in which the council either (1) adopted a resolution to declaring the
city’s intention to switch from at-large to district elections or (2) adopted a city ordinance
enacting the switch to district election and implementing the corresponding map. All
council members listed in the minutes—as example of which is shown in Appendix
Figure A-1 from South San Francisco—are considered to be incumbents for the purposes
of this study.

Once incumbent council members are identified, we located their corresponding
entries from California voter files that we obtained from L2. From L2, we requested
records of all voters residing in each of the cities included in this study as of the year the
city switched to district elections. This ensures that any information used from the voter
file as much as possible accurately reflects incumbents at the time they were in office and
the switch to district elections was implemented.

From L2, we obtain the following values:
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• Address: residential address as reported by the voter in the state voter file

• Gender: in this study, coded as “M” (male) or “F” (female)

• Age

• Party: California voters report their political party preference when registering to
vote; this information is available from the state voter file

• Race/ethnicity: values are modeled by L2; coded as being “White”, “Black”, “His-
panic”, “Asian”, or “Other”

To minimize the amount of missingness in our data, we use the fastLink package
for R (Enamorado, Fifield, and Imai 2017) to perform a fuzzy match to a dataset of
local election results compiled by de Benedictis-Kessner et al. (2023). From this data
source, we collect additional values of race/ethnicity, partisanship, and gender. As de
Benedictis-Kessner et al. (2023) describe, they implement a series of Random Forests to
model these values.

If missing values for address, race/ethnicity, partisanship, and gender remained, we
relied on a set of internet searches to fill them in. For identifying the race/ethnicity and
gender of candidates, we looked for campaign website, social media sites, or news articles
that contain pictures of the candidate. To fill in missing addresses, we predominately
relied on whitepages.com and truepeoplesearch.com, using a combination of candidate
name and city to locate the most appropriate record. Given the manageable number
of incumbents in our sample, our research team to manually checked every residential
location and validated it across a variety of sources, including media accounts, online
records, California voter files, and CEDA data. For all incumbents who ran again post-
districting (43% of our sample), we use the district shapefiles to check whether their
geolocations indeed fall within the districts in which they subsequently ran according to
CEDA. While this exercise uncovered a handful of inconsistencies, which we corrected, it
revealed that our process yields accurate addresses in the vast majority of cases, which
also gives us a high degree of confidence in our data for the 57% of incumbents who did
not run again.

With our incumbent dataset complete, we then used ArcGIS to geocode the address
for each incumbent. Using a spatial join, we use the geocoded address of each candidate
to determine the Census block in which the incumbent resides.

A.3 City-Level Variables

Gini index. Let x = (x1, x2, . . . , xn) denote the vector of tract-level median incomes, and
let w = (w1, w2, . . . , wn) denote the corresponding population weights. We first calculated
the weighted mean income:

µ =
∑n

i=1 wixi

∑n
i=1 wi
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We then computed all pairwise absolute differences in income |xi − xj|, weighted by
the product of tract populations wiwj. The Gini index was calculated using the following
formula:

G =
∑n

i=1 ∑n
j=1 wiwj|xi − xj|

2µ (∑n
i=1 wi)

2

Dissimilarity index. Let Wi and NWi denote the white and non-white CVAP in tract
i, respectively, and let W = ∑i Wi and NW = ∑i NWi be the total white and non-white
CVAP in the city, respectively. The dissimilarity index is given by:

D =
1
2

n

∑
i=1

∣∣∣∣Wi

W
− NWi

NW

∣∣∣∣
Competitiveness. Our main measure of electoral competitiveness is the effective number
of candidates divided by the number of seats that are up for election. The effective number
of candidates is computed according to the “effective number of parties” formula (Laakso
and Taagepera 1979), which is given by:

ENC =
1

∑n
i=1 pi

where i indexes candidates in an election with n total candidates, and pi is the proportion
of all votes cast that went to that candidate.

As an alternative measure, we also compute the difference in vote shares between
the winning candidate with the fewest votes and the losing candidate with the most
votes, taken over the four elections prior to the first district election. If there are as
many candidates as there are seats up for election—that is, if candidates are functionally
unopposed—then we take the difference between the vote share of the winning candi-
date with the fewest votes and zero. All of our results are robust to this definition of
competitiveness.

Turnout. The CEDA data includes a unique identifier for each election in a city. However,
some at-large elections are for one seat while others are for multiple seats, with voters
casting as many votes as there are open seats. We therefore compute the number of voters
in an election as the sum of votes cast in that election divided by the number of winning
candidates; we divide this value by total CVAP in the city to get the turnout rate. As with
competitiveness, we compute the average turnout rate over the last four at-large elections
in each city.
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B Data Summary

B.1 Cities within Study’s Sample

Table B-1: City Data Collection Status

City Year Switched Shapefile Collected Included in Sample

Alhambra 2018 No No
Anaheim 2015 Yes Yes
Antioch 2018 No No
Apple Valley 2019 Yes Yes
Arcadia 2017 No No

Arroyo Grande 2019 No No
Atascadero 2022 No No
Atwater 2017 Yes Yes
Bakersfield 2018 No No
Banning 2016 Yes Yes

Barstow 2018 Yes Yes
Bellflower 2016 No No
Big Bear Lake 2017 Yes Yes
Brentwood 2019 No No
Buellton 2018 No No

Buena Park 2016 Yes Yes
Camarillo 2019 Yes No
Campbell 2019 Yes Yes
Carlsbad 2017 Yes Yes
Carpinteria 2017 No No

Carson 2020 No No
Cathedral City 2017 Yes Yes
Ceres 2015 Yes Yes
Chino 2016 No No
Chino Hills 2016 Yes Yes

Chula Vista 2012 Yes Yes
Citrus Heights 2019 Yes Yes
Claremont 2018 Yes Yes
Coalinga 2018 No No
Compton 2012 Yes No

Concord 2018 Yes Yes
Corona 2016 Yes Yes
Costa Mesa 2016 No No
Dana Point 2018 Yes Yes
Davis 2019 No No
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Desert Hot Springs 2021 No No
Diamond Bar 2022 No No
Dixon 2016 Yes Yes
Duarte 2017 Yes Yes
Dublin 2022 No No

Eastvale 2016 Yes Yes
El Cajon 2016 No No
El Monte 2022 No No
Elk Grove 2019 Yes No
Encinitas 2017 Yes Yes

Escondido 2013 Yes No
Eureka 2016 No No
Exeter 2017 Yes No
Fairfield 2019 Yes Yes
Fontana 2017 Yes Yes

Fremont 2017 Yes Yes
Fullerton 2016 Yes Yes
Garden Grove 2016 Yes Yes
Glendale 2018 No No
Glendora 2017 Yes Yes

Goleta 2017 No No
Half Moon Bay 2018 Yes Yes
Hemet 2016 Yes Yes
Hesperia 2017 Yes Yes
Highland 2016 No No

Imperial Beach 2018 Yes Yes
Indio 2017 Yes Yes
Jurupa Valley 2017 Yes Yes
King City 2016 Yes No
Kingsburg 2018 Yes No

La Mirada 2016 Yes Yes
La Palma 2022 No No
Lake Elsinore 2018 No No
Lake Forest 2017 Yes Yes
Lakewood 2021 No No

Lemoore 2018 Yes No
Lincoln 2020 Yes Yes
Livermore 2018 No No
Lodi 2017 Yes Yes
Lompoc 2017 Yes Yes

Los Alamitos 2018 No No
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Los Banos 2014 Yes Yes
Madera 2010 Yes No
Malibu 2020 No No
Manteca 2021 No No

Marina 2019 Yes No
Martinez 2017 No No
Menlo Park 2017 Yes Yes
Merced 2015 No No
Millbrae 2022 No No

Mission Viejo 2022 No No
Modesto 2008 Yes No
Monterey Park 2019 Yes Yes
Moorpark 2018 No No
Morgan Hill 2017 Yes No

Murrieta 2017 Yes Yes
Napa 2020 Yes Yes
National City 2021 No No
Novato 2019 Yes Yes
Oceanside 2017 No No

Ojai 2018 Yes Yes
Ontario 2020 No No
Orange 2018 Yes Yes
Oroville 2019 No No
Oxnard 2018 Yes Yes

Pacifica 2018 Yes Yes
Palm Desert 2019 No No
Palm Springs 2018 Yes Yes
Palmdale 2015 Yes Yes
Paso Robles 2018 Yes No

Patterson 2016 Yes No
Perris 2021 No No
Petaluma 2021 No No
Placentia 2016 Yes Yes
Pleasanton 2021 No No

Porterville 2018 Yes Yes
Poway 2017 Yes Yes
Rancho Cucamonga 2016 Yes Yes
Redlands 2017 Yes Yes
Redwood City 2018 Yes Yes

Richmond 2019 Yes Yes
Riverbank 2015 No No
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Rohnert Park 2020 Yes No
Roseville 2019 Yes No
San Francisco 2000 No No

San Juan Capistrano 2016 No No
San Marcos 2016 No No
San Mateo 2021 No No
San Rafael 2018 Yes Yes
San Ramon 2019 No No

Sanger 2010 Yes No
Santa Ana 2018 No No
Santa Barbara 2014 Yes Yes
Santa Clara 2018 Yes Yes
Santa Clarita 2016 No No

Santa Cruz 2020 No No
Santa Maria 2017 Yes Yes
Santa Rosa 2017 Yes Yes
Santee 2018 Yes Yes
Selma 2019 Yes No

Simi Valley 2018 Yes Yes
Solana Beach 2018 Yes Yes
South Pasadena 2017 Yes Yes
South San Francisco 2018 Yes Yes
Stanton 2017 Yes Yes

Stockton 2016 Yes No
Sunnyvale 2018 Yes Yes
Tehachapi 2017 Yes Yes
Temecula 2017 Yes Yes
Torrance 2018 Yes Yes

Tulare 2012 Yes No
Turlock 2014 Yes Yes
Tustin 2021 No No
Twentynine Palms 2018 Yes Yes
Union City 2019 Yes Yes

Upland 2016 Yes Yes
Vacaville 2018 No No
Vallejo 2018 Yes Yes
Ventura 2018 Yes No
Victorville 2021 No No

Visalia 2014 Yes Yes
Vista 2017 Yes Yes
Wasco 2017 Yes Yes
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West Covina 2016 Yes Yes
Westminster 2019 Yes No

Whittier 2014 Yes Yes
Wildomar 2016 Yes Yes
Windsor 2019 No No
Woodland 2014 Yes Yes
Yuba City 2022 No No

Yucaipa 2016 Yes Yes
Yucca Valley 2018 Yes Yes

Total (n=167) - 109 87

In Table B-1, we list all 167 California cities that have transitioned from at-large to
district elections. Column 2 reports the year in which the city council voted—either by
ordinance or referendum—to adopt district elections. Column 3 indicates whether a
properly formatted shapefile for the city’s first district-based election is available and was
collected by us. Finally, Column 4 notes whether we were able to identify the full set of
incumbent city council members at the time of the transition and map adoption, and thus
include the city in our study.

Table B-2: City Summary Statistics

Variable All, N = 482 Switched, N = 167 Included, N = 87

Population 68,097 (209,042) 87,318 (90,216) 84,596 (61,550)
Prop. Nonwhite 0.367 (0.186) 0.405 (0.164) 0.397 (0.159)
Median Income ($) 85,996 (42,794) 83,922 (28,005) 84,284 (26,992)
Homeownership Rate 0.587 (0.141) 0.590 (0.107) 0.595 (0.097)
Dissimilarity 0.174 (0.087) 0.201 (0.059) 0.201 (0.058)

Gini Coefficient 0.130 (0.056) 0.149 (0.045) 0.152 (0.041)
Unknown 32 0 0

1 Mean (SD)

In Table B-2, we present mean values for six Census variables across California cities.
Column 2 reports means for all 482 cities in the state. Column 3 shows means for cities
that have switched from at-large to district election. Column 4 reports means for the
subset of cities included in our study. All variables are calculated using the 2020 American
Community Survey 5-year estimates.
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B.2 Incumbent Candidates

Table B-3: Descriptive Summary of Incumbents in Sample (with Comparision to California
Population)

Characteristic Incumbents, N = 420 CA Population

Race
White 342 (81%) 41.2%
Black 5 (1.2%) 5.7%
Hispanic 46 (11%) 39.4%
Asian 27 (6.4%) 15.4%

Sex
Male 294 (70%) 49.7%
Female 126 (30%) 50.3%

Party
Democrat 176 (42%) 46%

Republican 216 (52%) 24%
Other 23 (5.5%) 30%
Unknown 5

Homeowner
Yes 296 (87%) 55.3%

No 45 (13%) 44.7%
Unknown 79

Mayor 49 (12%)
Terms Served

1 176 (45%)

2 114 (29%)
3 59 (15%)
4 27 (6.9%)
5 11 (2.8%)
6 2 (0.5%)

Unknown 31
1 n (%)

In Table B-3, we present a descriptive summary of incumbent candidates from the cities
included in our study. For comparison, we include reference values for the overall
population of California. Racial demographics are drawn from the U.S. Census Bureau’s
2020 P.L. 94-171 redistricting file, while sex and homeownership data come from the 2020
American Community Survey 5-year estimates. Party registration data are reported by
the California Secretary of State.4

4. See https://elections.cdn.sos.ca.gov/ror/15day-gen-2020/historical-reg-stats.pdf.
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C District Simulations

C.1 Redistricting Algorithm

We use the automated redistricting simulator proposed by Fifield et al. (2020). We select
this algorithm for a few reasons. First, it can incorporate contiguity, compactness, and
equal population constraints into the estimation process, meaning that it approximates
the particular distribution of plans that real-world decisionmakers, given the physical
and residential geography of their city, can feasibly produce under federal law. To our
knowledge this algorithm is the best among currently available methods at approximating
this particular distribution that is of substantive interest to us. Second, the algorithm
is computationally efficient, scales well, and is easy to implement using the R package
redist (Kenny et al. 2021).

We refer the interested reader to a detailed discussion of the algorithm in the published
articles (Fifield et al. 2020; McCartan et al. 2022), presenting only the intuition here. The
approach treats the task of assigning m geographic units (for us, Census blocks) to n
contiguous council districts as a graph-cut problem: partitioning a graph—where nodes
represent geographic units and edges between two nodes represent their contiguity—into
a set of connected subgraphs, representing districts. It then uses a Sequential Monte
Carlo (SMC) algorithm to obtain a representative sample of plans from the distribution of
valid plans as formulated in this way.

C.2 Parameter Selection

The algorithm requires a few key user-defined parameters. The first is compactness,
which we set at the default level of ρ = 1 for every city.5 Larger values of ρ correspond to
a preference for fewer edge cuts and therefore a redistricting plan with more compact
districts.

The user is also required to provide a value for the maximal deviation from population
parity—that is, where the city’s population is divided evenly among districts—that will
be tolerated of any district in a feasible plan. Legislative districting at the federal level
is held to a very high population equality standard. In the 1983 case Karcher v. Daggett,
the Supreme Court ruled that there is no deviation that could practically be avoided
that is too small to potentially violate the “one person, one vote” standard set by Article
I, Section 2 of the Constitution. However, at the local level, larger deviations may be
necessary to achieve other districting goals, especially in smaller and more sparsely or
unevenly populated municipalities.

Absent concrete legal guidance or precedent at the city level, we approach the deter-
mination of the maximum tolerable deviation from population parity as an empirical
matter. First we compute, for every adopted district plan, the maximal deviation of any
district, given by:

max1≤l≤n

∣∣∣∣∑i∈Vl
pi

p̄
− 1

∣∣∣∣ (4)

5. See McCartan et al. (2022), Section 3.3 for further detail on why ρ = 1 is recommended.
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where Vl is a district, n is the number of districts, i is a Census block, pi is the population
in block i from the 2010 Census, and p̄ is defined as ∑m

i=1 pi/n (where m is the number of
blocks). We find that some cities, in particular smaller ones, have very high values—far
beyond what is usually tolerated at the federal level—and the overall mean across cities
is 0.10. We therefore set the population tolerance parameter as the maximum of 0.01
and the city’s own adopted map’s largest deviation,6 with the rationale that if a certain
deviation was permitted in practice, then any plan with smaller deviations would have
been fair game as well—at least on this dimension. While we cannot know how much
larger a deviation might have been tolerated, our approach yields relatively conservative
target distributions—that is, it may exclude some counterfactual possibilities that were in
fact on the table. Still, because the deviations are so high in practice, the algorithm still
has a large degree of freedom to explore alternative plans.

C.3 Plan Measurements

We primarily rely on two quantities of interest to measure the degree of incumbent
protection observed in city council districting: Alonec,i and Proportion Alonec. Alonec,i
is binary indicator that takes a value of “1” if incumbent i in city c is assigned to their own
district; “0” if candidate i is assigned to district with any number of other incumbents.
Proportion Alonec is defined as the total number of incumbents in city c assigned to
their own district, divided by the total number of incumbents sitting on the council when
city c switched to district elections. We create values for these measures based on the
district maps actually adopted by each city as well each simulated plan we create.

To construct values for these measures, we take the geocoded address for each
incumbent and determine the Census block they reside in, using st_within() from the
sf package for R to perform the necessary spatial join. For analyses using the enacted
map only, values of Alonec,i and Proportion Alonec are determined solely on the district
number candidates are determined to live in. In the 40,000 simulated plans we produce for
each city, we again calculate values of Alonec,i and Proportion Alonec. In each simulation
draw, we determine the city council district to which the Census block of the incumbent is
assigned. We are able to determine this through the following procedure using a built-in
function from the redist package (Kenny et al. 2021):

1. Use the get_plans_matrix() function to extract the matrix of district assignments
from a redistricting simulation for each Census block. Rows of this matrix represent
each Census block within the city’s limits. Columns represent district assignments
for a single draw.

2. Join the resulting matrix to a data frame of incumbent information by the GEOID10
value representing the Census block in which the incumbent resides.

3. For each column (representing a single simulation draw), apply the following
function to identify whether any two or more candidates are assigned to the same
city council district in that draw:

6. Although we made this decision as a safeguard against overly conservative restrictions, this constraint
never binds in practice: the observed value is never less than 0.01.
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1 check_duplicates <- function(col) {
2 as.integer(duplicated(col) |
3 duplicated(col, fromLast = TRUE))
4 }

4. For the enacted plan, Alonec,i = 1 if the check_duplicates() function returns a “1”
based on the first column of the plans matrix. For the simulated plans, Alonec,i = 1
if the check_duplicates() function returns a “1” based on the corresponding
column for that simulation draw in the plans matrix.

5. For the enacted plan (column 1) and all simulated plans, Proportion Alonec is
calculated as the proportion of incumbents assigned to their own district, divided
by the total number of incumbents.
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D Additional Tables and Figures

Figure D-2: Spatial Distribution of Cities in Our Sample. The locations of our 87 cities,
with points slightly jittered for visibility. Points are colored according to the quantile of
the city’s simulation distribution of Proportion Alonec in which the enacted plan falls.

Figure D-3: Minority Representation versus Incumbent Protection. Each point repre-
sents the quantile of the simulation distribution of Proportion Alonec (y-axis) versus the
quantile of the simulation distribution of the proportion of city council districts where
a majority of the citizen voting age population is nonwhite (x-axis). The size of points
correspond to the city’s citizen voting age population (CVAP).
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Table D-4: Predictors of Enacted Incumbency Advantage — Robustness with/without Simu-
late Alone Probability

With Without

Incumbent: Simulated Alone Probability 0.744***

(0.066)

Incumbent: White −0.133 −0.234

(0.180) (0.206)

Incumbent: Republican 0.068 0.086+

(0.045) (0.052)

Incumbent: Female 0.028 0.034

(0.045) (0.052)

Incumbent’s block group: Homeownership Rate 0.092 0.110

(0.117) (0.135)

Incumbent’s block group: Prop. White 0.023 −0.321*

(0.118) (0.131)

Incumbent’s block group: log(Median Income) −0.003 −0.060

(0.064) (0.073)

City: log(Population) −0.216*** −0.176***

(0.037) (0.042)

City: log(Median Household Income) 0.099 0.249*

(0.108) (0.124)

City: Residential Segregation −0.370 −0.478

(0.284) (0.326)

City: Gini coefficient 0.393 0.590

(0.500) (0.574)

City: Prop. White of Last At-large Council 0.076 −0.002

(0.224) (0.257)

City: Prop. of CVAP, White 0.405+ 0.858***

(0.209) (0.236)

City: sd(Pre-Switch Electoral Competition) 0.057* 0.071*

(0.025) (0.029)

City: sd(Pre-Switch Turnout Rate) −0.181*** −0.202***

(0.040) (0.046)

City: Off-cycle city council elections −0.116 −0.141

(0.107) (0.123)

Incumbent: White x City: Prop. White of Last At-large Council −0.043 0.135

(0.247) (0.283)

City: Off-cycle elections x City: sd(Pre-Switch Turnout Rate) 0.108 0.100

(0.075) (0.086)

(Intercept) 1.479 0.240

(0.910) (1.038)

N 415 415

R2 0.363 0.157

+ p <0.1, * p <0.05, ** p <0.01, *** p <0.001
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Table D-5: Effect of Districting on Incumbents’ Reelection Prospects

Kept Seat Ran for Reelection

Incumbent: Alone in Adopted Map 0.361*** 0.379***

(0.068) (0.067)

Incumbent: Simulated Alone Probability −0.215* −0.159

(0.105) (0.105)

Incumbent: White −0.082 0.174

(0.264) (0.263)

Incumbent: Republican 0.122* 0.146*

(0.061) (0.061)

Incumbent: Female 0.019 0.004

(0.061) (0.061)

Incumbent’s block group: Homeownership Rate −0.084 −0.085

(0.156) (0.155)

Incumbent’s block group: Prop. White −0.179 −0.120

(0.155) (0.154)

Incumbent’s block group: log(Median Income) 0.032 −0.037

(0.083) (0.083)

City: log(Population) 0.038 −0.017

(0.051) (0.050)

City: log(Median Household Income) 0.025 0.196

(0.144) (0.143)

City: Residential Segregation 0.156 0.467

(0.367) (0.365)

City: Gini coefficient −0.799 −0.382

(0.667) (0.663)

City: Prop. White of Last At-large Council −0.394 −0.083

(0.326) (0.324)

City: Prop. of CVAP, White 0.653* 0.576*

(0.274) (0.273)

City: sd(Pre-Switch Electoral Competition) 0.013 0.027

(0.032) (0.031)

City: sd(Pre-Switch Turnout Rate) 0.025 −0.033

(0.056) (0.056)

City: Off-cycle city council elections 0.015 0.005

(0.160) (0.160)

Incumbent: White x City: Prop. White of Last At-large Council 0.070 −0.301

(0.360) (0.358)

City: Off-cycle elections x City: sd(Pre-Switch Turnout Rate) 0.000 0.020

(0.111) (0.111)

(Intercept) −0.588 −1.332

(1.233) (1.227)

N 325 325

R2 0.162 0.177

+ p <0.1, * p <0.05, ** p <0.01, *** p <0.001
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Table D-6: Effect of Incumbency Protection on Post-Districting Election Outcomes, Latino
Opportunity Districts

New cands Lat. cands Lat. elected

1 Incumbent −0.741** −0.354+ −0.188*
(0.259) (0.190) (0.080)

2+ Incumbents −0.641+ −0.357 −0.172
(0.373) (0.274) (0.115)

District: Prop. of CVAP, Hispanic 2.176 3.619* 1.351+
(2.322) (1.704) (0.716)

District: Prop. of CVAP, White 2.234 1.271 −0.140
(2.396) (1.758) (0.739)

District: Prop. of voters, Democrats 2.016 −0.188 −0.548
(2.156) (1.582) (0.665)

District: log(Median household income) 0.449 0.086 −0.111
(0.729) (0.535) (0.225)

City: Homeownership Rate 0.269 0.665 −0.185
(1.656) (1.215) (0.511)

City: log(Population) 0.386 0.362* 0.032
(0.238) (0.175) (0.073)

City: log(Median Household Income) −0.510 −0.300 0.055
(0.818) (0.601) (0.252)

City: Residential Segregation −3.065+ −1.623 −0.131
(1.578) (1.158) (0.486)

City: Gini coefficient −0.682 −1.182 −0.357
(3.199) (2.348) (0.986)

City: Prop. White of Last At-large Council 0.567 −0.222 −0.095
(0.653) (0.479) (0.201)

City: Prop. of CVAP, Hispanic −0.924 0.820 0.739
(2.310) (1.695) (0.712)

City: Prop. of CVAP, White −1.617 0.497 0.891
(2.419) (1.775) (0.746)

City: sd(Pre-Switch Electoral Competition) 0.173+ 0.137+ 0.049
(0.101) (0.074) (0.031)

City: sd(Pre-Switch Turnout Rate) 0.068 0.109 −0.057
(0.314) (0.230) (0.097)

City: Off-cycle city council elections 0.382 1.017+ 0.507*
(0.820) (0.602) (0.253)

City: Off-cycle elections x City: sd(Pre-Switch Turnout Rate) 0.215 0.266 0.243+
(0.431) (0.316) (0.133)

(Intercept) −2.766 −2.622 0.128
(6.761) (4.961) (2.084)

N 145 145 145
R2 0.235 0.282 0.280

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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E Simulation Diagnostics

We run the SMC algorithm with 4 independent chains with 10,000 simulations in each
chain to assess convergence. This gives us 40,000 draws from the target distribution. Then
we renumber the districts for each plan in a way that minimizes the number of blocks
that have changed from the adopted plan.

The redist package helpfully computes several diagnostics to help the user assess
whether the algorithm successfully sampled from the target distribution. We briefly
describe each of these diagnostics, reported in Table E-7, and refer the reader to Fifield
et al. (2020) as well as the redist package documentation7 for more details.

• Effective Sample Size (Column 4)
The ratio of the effective sample size, computed using the SMC weights, to the total
samples. Computed for run 1 of chain 1. Reported range is the minimum and
maximum value across splits, excluding resample. Larger values (close to 100%) are
better.

• Acceptance Rate (Column 5)
Fraction of drawn spanning trees that yield a valid redistricting plan within the
population tolerance. Computed for run 1 of chain 1. Reported range is the
minimum and maximum value across splits. We seek to avoid very small values
(< 1%), which can indicate a bottleneck.

• Standard Deviation of the Log Weights (Column 6)
Standard deviation of the log weights. Computed for run 1 of chain 1. Reported
range is the minimum and maximum value across splits, excluding resample. High
standard deviations indicate less efficient sampling; values greater than 3 are likely
problematic.

• Maximum Unique Plans (Column 7)
An upper bound on the number of unique redistricting plans that survive each stage.
Computed for run 1 of chain 1. Reported range is the minimum and maximum
value across splits, excluding resample. Small values indicate a bottleneck.

• Estimated k parameter (Column 8)
How many spanning tree edges were considered for cutting at each split.

7. https://alarm-redist.org/redist/reference/summary.redist_plans.html
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Table E-7: redist Plan Diagnostics

City Run Step Eff. samples (%) Acc. rate Log wgt. sd Max. unique Est. k

1 Split 1 9100 (91%) 0.34 0.75 6375 66
1 Split 2 9008 (90%) 0.33 0.62 6267 36
1 Split 3 8994 (90%) 0.47 0.58 6123 19
1 Split 4 8843 (88%) 0.54 0.65 6029 11
1 Split 5 8681 (87%) 0.26 0.71 5373 7
1 Resample 4536 (45%) NA 0.68 7093 NA
2 Split 1 9084 (91%) 0.42 0.76 6310 53
2 Split 2 9027 (90%) 0.35 0.61 6299 33
2 Split 3 8947 (89%) 0.48 0.58 6140 18
2 Split 4 8901 (89%) 0.56 0.64 6046 10
2 Split 5 8738 (87%) 0.26 0.69 5359 7
2 Resample 5255 (53%) NA 0.68 7151 NA
3 Split 1 9103 (91%) 0.34 0.75 6307 67
3 Split 2 9005 (90%) 0.30 0.62 6280 40
3 Split 3 9029 (90%) 0.43 0.58 6117 21
3 Split 4 8955 (90%) 0.45 0.63 6000 15
3 Split 5 8826 (88%) 0.22 0.69 5451 9
3 Resample 5579 (56%) NA 0.66 7227 NA
4 Split 1 9105 (91%) 0.38 0.75 6312 59
4 Split 2 9030 (90%) 0.37 0.61 6242 31
4 Split 3 8937 (89%) 0.51 0.59 6142 17
4 Split 4 8917 (89%) 0.40 0.64 5951 18
4 Split 5 8651 (87%) 0.21 0.72 5443 10

ANAHEIM

4 Resample 4907 (49%) NA 0.69 7048 NA

1 Split 1 9850 (98%) 0.19 0.24 6250 44
1 Split 2 9630 (96%) 0.32 0.40 6300 23
1 Split 3 9398 (94%) 0.45 0.48 6202 13
1 Split 4 9135 (91%) 0.18 0.53 5716 11
1 Resample 6031 (60%) NA 0.53 7712 NA
2 Split 1 9848 (98%) 0.14 0.25 6267 60
2 Split 2 9644 (96%) 0.23 0.40 6297 31
2 Split 3 9375 (94%) 0.36 0.48 6215 17
2 Split 4 9081 (91%) 0.19 0.53 5722 10
2 Resample 5235 (52%) NA 0.53 7685 NA
3 Split 1 9854 (99%) 0.21 0.24 6286 39
3 Split 2 9643 (96%) 0.33 0.40 6248 22
3 Split 3 9298 (93%) 0.42 0.49 6161 14
3 Split 4 9037 (90%) 0.23 0.54 5662 8
3 Resample 4986 (50%) NA 0.54 7664 NA
4 Split 1 9853 (99%) 0.22 0.24 6306 38
4 Split 2 9657 (97%) 0.36 0.40 6294 20
4 Split 3 9255 (93%) 0.27 0.49 6249 23
4 Split 4 9037 (90%) 0.15 0.55 5701 13

APPLEVALLEY

4 Resample 5208 (52%) NA 0.54 7601 NA

1 Split 1 8597 (86%) 0.18 0.64 6389 16
1 Split 2 8678 (87%) 0.30 0.63 5906 9
1 Split 3 8321 (83%) 0.10 0.70 5562 10
1 Resample 3548 (35%) NA 0.70 6707 NA
2 Split 1 8565 (86%) 0.15 0.65 6325 20
2 Split 2 8750 (87%) 0.24 0.62 5828 11
2 Split 3 8459 (85%) 0.14 0.69 5560 7
2 Resample 4355 (44%) NA 0.69 6795 NA
3 Split 1 8572 (86%) 0.19 0.64 6307 15
3 Split 2 8769 (88%) 0.29 0.62 5869 9
3 Split 3 8335 (83%) 0.16 0.71 5549 6
3 Resample 3919 (39%) NA 0.70 6668 NA
4 Split 1 8599 (86%) 0.16 0.64 6354 19
4 Split 2 8746 (87%) 0.27 0.62 5856 10
4 Split 3 8426 (84%) 0.16 0.69 5583 6

ATWATER

4 Resample 4156 (42%) NA 0.68 6794 NA
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Table E-7: redist Plan Diagnostics (continued)

City Run Step Eff. samples (%) Acc. rate Log wgt. sd Max. unique Est. k

1 Split 1 8886 (89%) 0.14 0.67 6273 17
1 Split 2 8803 (88%) 0.22 0.70 6038 10
1 Split 3 8742 (87%) 0.29 0.65 5984 6
1 Split 4 8297 (83%) 0.14 0.77 5402 4
1 Resample 3865 (39%) NA 0.74 6662 NA
2 Split 1 8915 (89%) 0.13 0.66 6274 18
2 Split 2 8755 (88%) 0.22 0.70 6023 10
2 Split 3 8778 (88%) 0.29 0.65 5947 6
2 Split 4 8241 (82%) 0.14 0.78 5295 4
2 Resample 3705 (37%) NA 0.75 6621 NA
3 Split 1 8911 (89%) 0.17 0.67 6358 14
3 Split 2 8767 (88%) 0.26 0.70 5978 8
3 Split 3 8653 (87%) 0.29 0.67 5970 6
3 Split 4 8266 (83%) 0.14 0.79 5389 4
3 Resample 3989 (40%) NA 0.76 6618 NA
4 Split 1 8900 (89%) 0.17 0.67 6259 14
4 Split 2 8768 (88%) 0.27 0.69 6009 8
4 Split 3 8745 (87%) 0.33 0.65 6037 5
4 Split 4 8299 (83%) 0.14 0.77 5367 4

BANNING

4 Resample 3534 (35%) NA 0.74 6658 NA

1 Split 1 9769 (98%) 0.11 0.30 6340 18
1 Split 2 8751 (88%) 0.14 0.73 6055 18
1 Split 3 8776 (88%) 0.08 0.65 5550 10
1 Resample 5180 (52%) NA 0.64 7189 NA
2 Split 1 9764 (98%) 0.07 0.30 6304 27
2 Split 2 8728 (87%) 0.17 0.74 5983 15
2 Split 3 8765 (88%) 0.08 0.66 5581 9
2 Resample 5039 (50%) NA 0.64 7214 NA
3 Split 1 9760 (98%) 0.12 0.31 6278 16
3 Split 2 8761 (88%) 0.27 0.73 6063 9
3 Split 3 8823 (88%) 0.11 0.64 5577 7
3 Resample 5287 (53%) NA 0.63 7278 NA
4 Split 1 9769 (98%) 0.12 0.30 6319 16
4 Split 2 8651 (87%) 0.27 0.76 5999 9
4 Split 3 8852 (89%) 0.11 0.63 5543 7

BARSTOW

4 Resample 5311 (53%) NA 0.62 7301 NA

1 Split 1 9423 (94%) 0.19 0.49 6294 21
1 Split 2 8405 (84%) 0.30 0.71 6240 12
1 Split 3 8677 (87%) 0.43 0.63 6027 7
1 Split 4 8381 (84%) 0.21 0.69 5496 5
1 Resample 3753 (38%) NA 0.70 6971 NA
2 Split 1 9432 (94%) 0.24 0.49 6314 17
2 Split 2 8386 (84%) 0.36 0.71 6153 10
2 Split 3 8648 (86%) 0.39 0.63 6067 8
2 Split 4 8396 (84%) 0.21 0.69 5476 5
2 Resample 3769 (38%) NA 0.70 7000 NA
3 Split 1 9430 (94%) 0.22 0.49 6280 18
3 Split 2 8536 (85%) 0.36 0.69 6131 10
3 Split 3 8554 (86%) 0.44 0.64 6048 7
3 Split 4 8439 (84%) 0.18 0.69 5505 6
3 Resample 3987 (40%) NA 0.70 7033 NA
4 Split 1 9423 (94%) 0.24 0.49 6315 17
4 Split 2 8337 (83%) 0.36 0.72 6187 10
4 Split 3 8546 (85%) 0.32 0.65 6027 10
4 Split 4 8387 (84%) 0.18 0.70 5458 6

BIGBEARLAKE

4 Resample 3766 (38%) NA 0.71 6994 NA
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Table E-7: redist Plan Diagnostics (continued)

City Run Step Eff. samples (%) Acc. rate Log wgt. sd Max. unique Est. k

1 Split 1 9694 (97%) 0.28 0.37 6367 43
1 Split 2 9451 (95%) 0.48 0.43 6238 23
1 Split 3 9273 (93%) 0.62 0.51 6158 14
1 Split 4 9186 (92%) 0.32 0.59 5613 8
1 Resample 6727 (67%) NA 0.55 7801 NA
2 Split 1 9688 (97%) 0.26 0.37 6323 45
2 Split 2 9420 (94%) 0.40 0.43 6218 28
2 Split 3 9216 (92%) 0.51 0.52 6182 19
2 Split 4 9058 (91%) 0.27 0.62 5567 11
2 Resample 5897 (59%) NA 0.58 7632 NA
3 Split 1 9693 (97%) 0.32 0.37 6315 37
3 Split 2 9428 (94%) 0.53 0.43 6275 20
3 Split 3 9230 (92%) 0.48 0.51 6252 21
3 Split 4 9042 (90%) 0.25 0.63 5663 12
3 Resample 6065 (61%) NA 0.58 7532 NA
4 Split 1 9689 (97%) 0.35 0.37 6350 33
4 Split 2 9439 (94%) 0.47 0.44 6249 24
4 Split 3 9293 (93%) 0.65 0.51 6176 13
4 Split 4 9171 (92%) 0.28 0.59 5624 10

BUENAPARK

4 Resample 6528 (65%) NA 0.55 7704 NA

1 Split 1 9705 (97%) 0.43 0.35 6302 50
1 Split 2 9537 (95%) 0.67 0.41 6259 26
1 Split 3 9374 (94%) 0.69 0.50 6167 20
1 Split 4 9075 (91%) 0.35 0.59 5590 13
1 Resample 5943 (59%) NA 0.55 7636 NA
2 Split 1 9699 (97%) 0.40 0.35 6296 54
2 Split 2 9519 (95%) 0.55 0.41 6218 33
2 Split 3 9332 (93%) 0.73 0.50 6163 18
2 Split 4 8999 (90%) 0.40 0.61 5553 10
2 Resample 5531 (55%) NA 0.56 7594 NA
3 Split 1 9698 (97%) 0.39 0.35 6331 55
3 Split 2 9525 (95%) 0.62 0.41 6243 29
3 Split 3 9280 (93%) 0.51 0.52 6086 30
3 Split 4 9001 (90%) 0.30 0.61 5563 16
3 Resample 5824 (58%) NA 0.57 7502 NA
4 Split 1 9697 (97%) 0.38 0.35 6358 56
4 Split 2 9525 (95%) 0.62 0.41 6258 29
4 Split 3 9313 (93%) 0.60 0.51 6170 24
4 Split 4 9048 (90%) 0.33 0.59 5577 14

CAMPBELL

4 Resample 5675 (57%) NA 0.55 7575 NA

1 Split 1 9660 (97%) 0.20 0.36 6386 30
1 Split 2 9386 (94%) 0.31 0.44 6264 17
1 Split 3 9129 (91%) 0.17 0.58 5733 10
1 Resample 6034 (60%) NA 0.54 7672 NA
2 Split 1 9665 (97%) 0.20 0.36 6331 31
2 Split 2 9387 (94%) 0.30 0.44 6243 18
2 Split 3 9089 (91%) 0.12 0.59 5728 14
2 Resample 5877 (59%) NA 0.55 7587 NA
3 Split 1 9661 (97%) 0.26 0.36 6373 24
3 Split 2 9365 (94%) 0.39 0.45 6225 13
3 Split 3 9025 (90%) 0.19 0.59 5711 9
3 Resample 5405 (54%) NA 0.56 7553 NA
4 Split 1 9661 (97%) 0.24 0.37 6346 26
4 Split 2 9315 (93%) 0.36 0.45 6252 14
4 Split 3 9120 (91%) 0.20 0.58 5742 8

CARLSBAD

4 Resample 6189 (62%) NA 0.54 7669 NA
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Table E-7: redist Plan Diagnostics (continued)

City Run Step Eff. samples (%) Acc. rate Log wgt. sd Max. unique Est. k

1 Split 1 9626 (96%) 0.19 0.39 6321 19
1 Split 2 9279 (93%) 0.29 0.45 6276 11
1 Split 3 9107 (91%) 0.28 0.53 6145 10
1 Split 4 8825 (88%) 0.15 0.60 5633 6
1 Resample 4514 (45%) NA 0.59 7372 NA
2 Split 1 9611 (96%) 0.24 0.39 6321 15
2 Split 2 9333 (93%) 0.34 0.44 6224 9
2 Split 3 9223 (92%) 0.33 0.51 6155 8
2 Split 4 8891 (89%) 0.17 0.59 5690 5
2 Resample 4420 (44%) NA 0.56 7509 NA
3 Split 1 9618 (96%) 0.20 0.39 6316 18
3 Split 2 9377 (94%) 0.31 0.44 6216 10
3 Split 3 9236 (92%) 0.42 0.51 6169 6
3 Split 4 8965 (90%) 0.11 0.57 5729 8
3 Resample 4807 (48%) NA 0.55 7575 NA
4 Split 1 9608 (96%) 0.19 0.40 6305 19
4 Split 2 9296 (93%) 0.29 0.46 6269 11
4 Split 3 9084 (91%) 0.37 0.54 6137 7
4 Split 4 8805 (88%) 0.17 0.61 5681 5

CATHEDRALCITY

4 Resample 4178 (42%) NA 0.58 7396 NA

1 Split 1 9520 (95%) 0.12 0.46 6366 9
1 Split 2 9520 (95%) 0.12 0.39 6223 8
1 Split 3 9351 (94%) 0.06 0.48 5881 5
1 Resample 6474 (65%) NA 0.48 8021 NA
2 Split 1 9520 (95%) 0.11 0.45 6339 10
2 Split 2 9534 (95%) 0.16 0.40 6187 6
2 Split 3 9373 (94%) 0.08 0.49 5844 4
2 Resample 7415 (74%) NA 0.48 8004 NA
3 Split 1 9526 (95%) 0.10 0.45 6337 11
3 Split 2 9539 (95%) 0.14 0.39 6256 7
3 Split 3 9360 (94%) 0.06 0.48 5794 5
3 Resample 7076 (71%) NA 0.48 8016 NA
4 Split 1 9515 (95%) 0.11 0.46 6263 10
4 Split 2 9561 (96%) 0.16 0.39 6235 6
4 Split 3 9385 (94%) 0.04 0.48 5833 8

CERES

4 Resample 7436 (74%) NA 0.48 8002 NA

1 Split 1 9641 (96%) 0.14 0.38 6311 17
1 Split 2 9366 (94%) 0.21 0.45 6248 10
1 Split 3 9122 (91%) 0.29 0.55 6053 6
1 Split 4 8968 (90%) 0.13 0.61 5388 4
1 Resample 5709 (57%) NA 0.59 7453 NA
2 Split 1 9651 (97%) 0.18 0.38 6302 14
2 Split 2 9364 (94%) 0.26 0.45 6216 8
2 Split 3 9147 (91%) 0.25 0.54 6073 7
2 Split 4 9050 (91%) 0.13 0.59 5441 4
2 Resample 5925 (59%) NA 0.57 7598 NA
3 Split 1 9623 (96%) 0.16 0.39 6355 15
3 Split 2 9360 (94%) 0.23 0.45 6224 9
3 Split 3 9109 (91%) 0.32 0.56 6093 5
3 Split 4 9006 (90%) 0.09 0.60 5448 6
3 Resample 5835 (58%) NA 0.58 7519 NA
4 Split 1 9636 (96%) 0.14 0.38 6311 18
4 Split 2 9375 (94%) 0.21 0.45 6184 10
4 Split 3 9110 (91%) 0.28 0.54 6059 6
4 Split 4 8983 (90%) 0.10 0.60 5470 6

CHINOHILLS

4 Resample 5683 (57%) NA 0.59 7510 NA

1 Split 1 9633 (96%) 0.27 0.37 6275 50
1 Split 2 9154 (92%) 0.44 0.52 6221 26
1 Split 3 8956 (90%) 0.27 0.57 5815 14
1 Resample 5043 (50%) NA 0.56 7546 NA
2 Split 1 9648 (96%) 0.27 0.36 6372 48
2 Split 2 9124 (91%) 0.46 0.53 6240 25
2 Split 3 8968 (90%) 0.26 0.58 5752 14
2 Resample 4935 (49%) NA 0.56 7505 NA
3 Split 1 9642 (96%) 0.31 0.36 6315 42
3 Split 2 9120 (91%) 0.51 0.52 6187 22
3 Split 3 8962 (90%) 0.29 0.57 5740 12
3 Resample 5005 (50%) NA 0.57 7490 NA
4 Split 1 9639 (96%) 0.29 0.36 6320 46
4 Split 2 9134 (91%) 0.48 0.52 6188 24
4 Split 3 8866 (89%) 0.28 0.58 5778 13

CHULAVISTA

4 Resample 4249 (42%) NA 0.57 7428 NA
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Table E-7: redist Plan Diagnostics (continued)

City Run Step Eff. samples (%) Acc. rate Log wgt. sd Max. unique Est. k

1 Split 1 9689 (97%) 0.25 0.35 6340 34
1 Split 2 9468 (95%) 0.41 0.44 6266 18
1 Split 3 9143 (91%) 0.56 0.55 6160 10
1 Split 4 8956 (90%) 0.30 0.59 5638 6
1 Resample 5360 (54%) NA 0.58 7506 NA
2 Split 1 9687 (97%) 0.25 0.35 6320 34
2 Split 2 9516 (95%) 0.41 0.43 6231 18
2 Split 3 9173 (92%) 0.50 0.55 6180 12
2 Split 4 8980 (90%) 0.27 0.58 5612 7
2 Resample 5317 (53%) NA 0.57 7527 NA
3 Split 1 9685 (97%) 0.28 0.35 6330 30
3 Split 2 9489 (95%) 0.46 0.43 6251 16
3 Split 3 9156 (92%) 0.50 0.54 6156 12
3 Split 4 9018 (90%) 0.27 0.58 5614 7
3 Resample 5657 (57%) NA 0.57 7478 NA
4 Split 1 9683 (97%) 0.32 0.35 6314 27
4 Split 2 9500 (95%) 0.48 0.43 6222 15
4 Split 3 9083 (91%) 0.64 0.56 6193 8
4 Split 4 8915 (89%) 0.33 0.59 5626 5

CITRUSHEIGHTS

4 Resample 4956 (50%) NA 0.58 7471 NA

1 Split 1 9318 (93%) 0.31 0.50 6289 31
1 Split 2 9056 (91%) 0.49 0.54 6150 17
1 Split 3 8917 (89%) 0.58 0.58 6164 11
1 Split 4 8758 (88%) 0.16 0.65 5505 15
1 Resample 5046 (50%) NA 0.64 7194 NA
2 Split 1 9329 (93%) 0.33 0.50 6367 30
2 Split 2 9067 (91%) 0.51 0.54 6223 16
2 Split 3 8918 (89%) 0.58 0.58 6127 11
2 Split 4 8770 (88%) 0.20 0.64 5554 12
2 Resample 4993 (50%) NA 0.63 7217 NA
3 Split 1 9318 (93%) 0.31 0.50 6327 31
3 Split 2 9019 (90%) 0.49 0.55 6173 17
3 Split 3 8894 (89%) 0.58 0.59 6098 11
3 Split 4 8785 (88%) 0.29 0.64 5534 7
3 Resample 4906 (49%) NA 0.63 7215 NA
4 Split 1 9327 (93%) 0.21 0.50 6341 47
4 Split 2 9037 (90%) 0.34 0.54 6108 25
4 Split 3 8841 (88%) 0.50 0.59 6048 14
4 Split 4 8816 (88%) 0.27 0.64 5576 8

CLAREMONT

4 Resample 5053 (51%) NA 0.63 7293 NA

1 Split 1 9708 (97%) 0.22 0.34 6320 69
1 Split 2 9433 (94%) 0.38 0.43 6200 36
1 Split 3 9240 (92%) 0.49 0.51 6144 24
1 Split 4 9064 (91%) 0.18 0.57 5652 22
1 Resample 5932 (59%) NA 0.56 7605 NA
2 Split 1 9704 (97%) 0.31 0.34 6330 48
2 Split 2 9482 (95%) 0.51 0.42 6219 25
2 Split 3 9337 (93%) 0.56 0.49 6199 20
2 Split 4 9151 (92%) 0.30 0.55 5620 11
2 Resample 6162 (62%) NA 0.54 7692 NA
3 Split 1 9707 (97%) 0.23 0.34 6362 65
3 Split 2 9436 (94%) 0.40 0.42 6190 34
3 Split 3 9292 (93%) 0.45 0.50 6139 27
3 Split 4 9162 (92%) 0.24 0.55 5612 15
3 Resample 6260 (63%) NA 0.53 7715 NA
4 Split 1 9715 (97%) 0.27 0.33 6327 55
4 Split 2 9433 (94%) 0.46 0.42 6231 29
4 Split 3 9317 (93%) 0.63 0.49 6210 16
4 Split 4 9111 (91%) 0.30 0.55 5590 11

CONCORD

4 Resample 5875 (59%) NA 0.54 7681 NA
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Table E-7: redist Plan Diagnostics (continued)

City Run Step Eff. samples (%) Acc. rate Log wgt. sd Max. unique Est. k

1 Split 1 9684 (97%) 0.14 0.35 6365 12
1 Split 2 9518 (95%) 0.21 0.41 6225 7
1 Split 3 9315 (93%) 0.27 0.50 6154 5
1 Split 4 9085 (91%) 0.10 0.57 5525 4
1 Resample 5911 (59%) NA 0.56 7602 NA
2 Split 1 9682 (97%) 0.14 0.35 6360 12
2 Split 2 9536 (95%) 0.21 0.41 6247 7
2 Split 3 9306 (93%) 0.18 0.50 6108 8
2 Split 4 9029 (90%) 0.09 0.57 5445 5
2 Resample 5024 (50%) NA 0.55 7567 NA
3 Split 1 9676 (97%) 0.12 0.36 6289 14
3 Split 2 9515 (95%) 0.19 0.41 6202 8
3 Split 3 9238 (92%) 0.26 0.51 6166 5
3 Split 4 8924 (89%) 0.13 0.60 5423 3
3 Resample 5034 (50%) NA 0.58 7461 NA
4 Split 1 9680 (97%) 0.17 0.36 6321 10
4 Split 2 9523 (95%) 0.24 0.41 6157 6
4 Split 3 9207 (92%) 0.26 0.52 6120 5
4 Split 4 9019 (90%) 0.12 0.58 5450 3

CORONA

4 Resample 5617 (56%) NA 0.57 7525 NA

1 Split 1 9143 (91%) 0.32 0.64 6339 36
1 Split 2 9095 (91%) 0.34 0.53 6279 20
1 Split 3 9057 (91%) 0.44 0.56 6116 11
1 Split 4 8740 (87%) 0.20 0.65 5487 8
1 Resample 4851 (49%) NA 0.64 7180 NA
2 Split 1 9124 (91%) 0.35 0.64 6299 33
2 Split 2 9105 (91%) 0.36 0.52 6219 18
2 Split 3 8928 (89%) 0.47 0.59 6086 10
2 Split 4 8741 (87%) 0.25 0.66 5538 6
2 Resample 4661 (47%) NA 0.64 7159 NA
3 Split 1 9149 (91%) 0.34 0.63 6292 34
3 Split 2 9126 (91%) 0.36 0.51 6229 18
3 Split 3 8932 (89%) 0.34 0.58 6055 15
3 Split 4 8652 (87%) 0.18 0.67 5447 9
3 Resample 4580 (46%) NA 0.66 7078 NA
4 Split 1 9135 (91%) 0.31 0.64 6305 37
4 Split 2 9092 (91%) 0.30 0.52 6214 22
4 Split 3 8955 (90%) 0.41 0.59 6093 12
4 Split 4 8662 (87%) 0.22 0.67 5520 7

DANAPOINT

4 Resample 4422 (44%) NA 0.65 7099 NA

1 Split 1 9682 (97%) 0.11 0.35 6310 10
1 Split 2 9498 (95%) 0.17 0.37 6218 6
1 Split 3 9096 (91%) 0.08 0.51 5840 4
1 Resample 5314 (53%) NA 0.50 7791 NA
2 Split 1 9680 (97%) 0.12 0.35 6373 9
2 Split 2 9493 (95%) 0.17 0.38 6236 6
2 Split 3 9070 (91%) 0.09 0.52 5782 4
2 Resample 5237 (52%) NA 0.51 7758 NA
3 Split 1 9679 (97%) 0.10 0.35 6273 11
3 Split 2 9508 (95%) 0.17 0.39 6248 6
3 Split 3 9151 (92%) 0.08 0.50 5786 4
3 Resample 5486 (55%) NA 0.49 7836 NA
4 Split 1 9679 (97%) 0.12 0.35 6274 9
4 Split 2 9540 (95%) 0.17 0.37 6196 6
4 Split 3 9157 (92%) 0.08 0.50 5864 4

DIXON

4 Resample 5373 (54%) NA 0.49 7848 NA
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Table E-7: redist Plan Diagnostics (continued)

City Run Step Eff. samples (%) Acc. rate Log wgt. sd Max. unique Est. k

1 Split 1 9437 (94%) 0.49 0.49 6320 37
1 Split 2 9246 (92%) 0.76 0.55 6178 21
1 Split 3 9058 (91%) 0.90 0.60 6180 13
1 Split 4 8933 (89%) 0.90 0.66 6129 10
1 Split 5 8819 (88%) 0.83 0.69 5904 6
1 Split 6 8519 (85%) 0.25 0.77 5109 11
1 Resample 4226 (42%) NA 0.72 7004 NA
2 Split 1 9434 (94%) 0.40 0.49 6392 45
2 Split 2 9247 (92%) 0.69 0.55 6151 24
2 Split 3 8987 (90%) 0.70 0.62 6062 21
2 Split 4 8926 (89%) 0.65 0.67 6025 19
2 Split 5 8733 (87%) 0.56 0.70 5760 15
2 Split 6 8569 (86%) 0.30 0.78 5088 10
2 Resample 4639 (46%) NA 0.72 6950 NA
3 Split 1 9430 (94%) 0.43 0.49 6301 42
3 Split 2 9219 (92%) 0.74 0.55 6187 22
3 Split 3 9043 (90%) 0.89 0.61 6153 14
3 Split 4 8951 (90%) 0.92 0.65 6081 9
3 Split 5 8790 (88%) 0.58 0.69 5791 14
3 Split 6 8479 (85%) 0.31 0.80 5156 9
3 Resample 4262 (43%) NA 0.74 6920 NA
4 Split 1 9429 (94%) 0.38 0.49 6302 47
4 Split 2 9245 (92%) 0.67 0.55 6162 25
4 Split 3 9058 (91%) 0.63 0.61 6126 24
4 Split 4 8878 (89%) 0.65 0.67 6085 19
4 Split 5 8756 (88%) 0.66 0.71 5790 11
4 Split 6 8571 (86%) 0.33 0.79 5075 8

DUARTE

4 Resample 4753 (48%) NA 0.73 6980 NA

1 Split 1 9701 (97%) 0.19 0.34 6335 12
1 Split 2 9419 (94%) 0.31 0.44 6125 7
1 Split 3 9084 (91%) 0.38 0.54 6117 5
1 Split 4 8798 (88%) 0.19 0.61 5461 3
1 Resample 4776 (48%) NA 0.60 7287 NA
2 Split 1 9700 (97%) 0.19 0.34 6326 12
2 Split 2 9469 (95%) 0.31 0.43 6195 7
2 Split 3 9131 (91%) 0.33 0.53 6150 6
2 Split 4 8813 (88%) 0.16 0.61 5538 4
2 Resample 4889 (49%) NA 0.61 7253 NA
3 Split 1 9702 (97%) 0.18 0.34 6306 13
3 Split 2 9457 (95%) 0.31 0.44 6266 7
3 Split 3 9090 (91%) 0.38 0.53 6099 5
3 Split 4 8166 (82%) 0.09 0.67 5547 7
3 Resample 2415 (24%) NA 0.67 6706 NA
4 Split 1 9696 (97%) 0.16 0.34 6377 14
4 Split 2 9482 (95%) 0.27 0.43 6099 8
4 Split 3 9064 (91%) 0.38 0.54 6102 5
4 Split 4 8721 (87%) 0.19 0.63 5459 3

EASTVALE

4 Resample 4584 (46%) NA 0.62 7201 NA

1 Split 1 9700 (97%) 0.15 0.34 6359 35
1 Split 2 9444 (94%) 0.24 0.42 6209 19
1 Split 3 9160 (92%) 0.13 0.53 5841 11
1 Resample 6230 (62%) NA 0.53 7760 NA
2 Split 1 9701 (97%) 0.24 0.34 6305 22
2 Split 2 9433 (94%) 0.36 0.43 6211 12
2 Split 3 9102 (91%) 0.18 0.54 5749 8
2 Resample 5706 (57%) NA 0.54 7656 NA
3 Split 1 9700 (97%) 0.19 0.34 6309 27
3 Split 2 9400 (94%) 0.30 0.44 6243 15
3 Split 3 9014 (90%) 0.16 0.56 5765 9
3 Resample 5389 (54%) NA 0.55 7582 NA
4 Split 1 9705 (97%) 0.17 0.34 6281 31
4 Split 2 9415 (94%) 0.26 0.43 6226 17
4 Split 3 9213 (92%) 0.16 0.52 5681 9

ENCINITAS

4 Resample 6517 (65%) NA 0.51 7774 NA
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Table E-7: redist Plan Diagnostics (continued)

City Run Step Eff. samples (%) Acc. rate Log wgt. sd Max. unique Est. k

1 Split 1 9245 (92%) 0.20 0.56 6348 18
1 Split 2 9319 (93%) 0.30 0.46 6231 10
1 Split 3 9260 (93%) 0.39 0.53 6156 6
1 Split 4 8932 (89%) 0.43 0.63 6109 4
1 Split 5 8788 (88%) 0.18 0.66 5415 3
1 Resample 5046 (50%) NA 0.65 7215 NA
2 Split 1 9242 (92%) 0.15 0.56 6303 25
2 Split 2 9288 (93%) 0.22 0.47 6206 14
2 Split 3 9199 (92%) 0.32 0.55 6189 8
2 Split 4 8938 (89%) 0.34 0.64 6057 6
2 Split 5 8706 (87%) 0.15 0.67 5409 4
2 Resample 4655 (47%) NA 0.65 7156 NA
3 Split 1 9229 (92%) 0.18 0.57 6338 20
3 Split 2 9290 (93%) 0.25 0.47 6156 12
3 Split 3 9242 (92%) 0.22 0.53 6177 12
3 Split 4 8927 (89%) 0.30 0.63 6077 7
3 Split 5 8728 (87%) 0.11 0.65 5453 6
3 Resample 4651 (47%) NA 0.65 7197 NA
4 Split 1 9237 (92%) 0.19 0.56 6263 19
4 Split 2 9317 (93%) 0.28 0.47 6149 11
4 Split 3 9255 (93%) 0.35 0.53 6189 7
4 Split 4 8891 (89%) 0.38 0.63 6075 5
4 Split 5 8815 (88%) 0.18 0.65 5400 3

FAIRFIELD

4 Resample 5233 (52%) NA 0.64 7263 NA

1 Split 1 9633 (96%) 0.21 0.39 6359 22
1 Split 2 9450 (94%) 0.34 0.42 6173 12
1 Split 3 9121 (91%) 0.19 0.50 5914 7
1 Resample 5125 (51%) NA 0.53 7782 NA
2 Split 1 9642 (96%) 0.18 0.38 6317 25
2 Split 2 9476 (95%) 0.30 0.42 6261 14
2 Split 3 9084 (91%) 0.17 0.51 5857 8
2 Resample 5111 (51%) NA 0.54 7713 NA
3 Split 1 9638 (96%) 0.18 0.39 6331 25
3 Split 2 9359 (94%) 0.30 0.43 6240 14
3 Split 3 9019 (90%) 0.17 0.52 5862 8
3 Resample 4491 (45%) NA 0.55 7683 NA
4 Split 1 9635 (96%) 0.17 0.39 6369 26
4 Split 2 9393 (94%) 0.30 0.42 6295 14
4 Split 3 9139 (91%) 0.17 0.52 5897 8

FONTANA

4 Resample 6162 (62%) NA 0.55 7706 NA

1 Split 1 9166 (92%) 0.35 0.52 6300 60
1 Split 2 9080 (91%) 0.55 0.53 6133 31
1 Split 3 8942 (89%) 0.48 0.58 6093 33
1 Split 4 8830 (88%) 0.62 0.62 5992 18
1 Split 5 8707 (87%) 0.33 0.66 5429 10
1 Resample 4956 (50%) NA 0.65 7138 NA
2 Split 1 9187 (92%) 0.28 0.51 6368 75
2 Split 2 9050 (91%) 0.47 0.54 6179 39
2 Split 3 8905 (89%) 0.53 0.59 6137 29
2 Split 4 8843 (88%) 0.66 0.61 6077 16
2 Split 5 8691 (87%) 0.30 0.65 5466 12
2 Resample 4537 (45%) NA 0.64 7162 NA
3 Split 1 9165 (92%) 0.35 0.51 6319 59
3 Split 2 9031 (90%) 0.36 0.54 6130 52
3 Split 3 8927 (89%) 0.56 0.59 6093 27
3 Split 4 8921 (89%) 0.65 0.61 6056 16
3 Split 5 8783 (88%) 0.34 0.64 5393 9
3 Resample 5096 (51%) NA 0.63 7247 NA
4 Split 1 9171 (92%) 0.32 0.51 6370 65
4 Split 2 9006 (90%) 0.52 0.55 6139 34
4 Split 3 9034 (90%) 0.70 0.57 6149 18
4 Split 4 8956 (90%) 0.76 0.59 6116 10
4 Split 5 8738 (87%) 0.37 0.63 5463 7

FREMONT

4 Resample 4383 (44%) NA 0.63 7232 NA
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Table E-7: redist Plan Diagnostics (continued)

City Run Step Eff. samples (%) Acc. rate Log wgt. sd Max. unique Est. k

1 Split 1 9663 (97%) 0.26 0.37 6343 59
1 Split 2 9419 (94%) 0.43 0.43 6339 31
1 Split 3 9181 (92%) 0.61 0.52 6185 17
1 Split 4 8857 (89%) 0.26 0.60 5612 14
1 Resample 4390 (44%) NA 0.58 7433 NA
2 Split 1 9659 (97%) 0.34 0.37 6322 44
2 Split 2 9437 (94%) 0.55 0.43 6258 23
2 Split 3 9206 (92%) 0.69 0.52 6169 13
2 Split 4 8990 (90%) 0.36 0.59 5564 8
2 Resample 5072 (51%) NA 0.57 7521 NA
3 Split 1 9662 (97%) 0.28 0.37 6345 54
3 Split 2 9445 (94%) 0.47 0.43 6266 28
3 Split 3 9168 (92%) 0.65 0.53 6164 15
3 Split 4 9001 (90%) 0.22 0.59 5719 17
3 Resample 5597 (56%) NA 0.57 7541 NA
4 Split 1 9659 (97%) 0.35 0.37 6297 43
4 Split 2 9453 (95%) 0.35 0.43 6267 39
4 Split 3 9181 (92%) 0.56 0.52 6179 20
4 Split 4 8995 (90%) 0.17 0.58 5650 24

FULLERTON

4 Resample 5457 (55%) NA 0.56 7578 NA

1 Split 1 9620 (96%) 0.33 0.40 6349 49
1 Split 2 9437 (94%) 0.50 0.47 6314 27
1 Split 3 9226 (92%) 0.69 0.53 6157 15
1 Split 4 8989 (90%) 0.58 0.60 6085 16
1 Split 5 8720 (87%) 0.32 0.67 5518 9
1 Resample 4810 (48%) NA 0.64 7166 NA
2 Split 1 9622 (96%) 0.31 0.40 6333 50
2 Split 2 9444 (94%) 0.49 0.47 6210 28
2 Split 3 9268 (93%) 0.54 0.52 6162 22
2 Split 4 9023 (90%) 0.68 0.60 6116 12
2 Split 5 8825 (88%) 0.35 0.66 5415 7
2 Resample 5343 (53%) NA 0.63 7244 NA
3 Split 1 9622 (96%) 0.38 0.40 6379 41
3 Split 2 9443 (94%) 0.59 0.47 6273 22
3 Split 3 9197 (92%) 0.75 0.54 6220 12
3 Split 4 9079 (91%) 0.80 0.59 6090 7
3 Split 5 8867 (89%) 0.40 0.64 5484 5
3 Resample 5355 (54%) NA 0.62 7313 NA
4 Split 1 9612 (96%) 0.37 0.40 6319 42
4 Split 2 9428 (94%) 0.59 0.47 6227 22
4 Split 3 9236 (92%) 0.72 0.53 6222 14
4 Split 4 9000 (90%) 0.65 0.60 6131 13
4 Split 5 8730 (87%) 0.26 0.68 5559 12

GARDENGROVE

4 Resample 4775 (48%) NA 0.65 7141 NA

1 Split 1 9670 (97%) 0.17 0.35 6323 24
1 Split 2 9525 (95%) 0.27 0.40 6160 13
1 Split 3 9393 (94%) 0.39 0.49 6090 7
1 Split 4 9103 (91%) 0.21 0.56 5551 4
1 Resample 5561 (56%) NA 0.54 7729 NA
2 Split 1 9671 (97%) 0.22 0.35 6328 18
2 Split 2 9558 (96%) 0.34 0.40 6165 10
2 Split 3 9388 (94%) 0.43 0.49 6172 6
2 Split 4 9004 (90%) 0.20 0.57 5659 4
2 Resample 4989 (50%) NA 0.55 7605 NA
3 Split 1 9683 (97%) 0.15 0.35 6322 27
3 Split 2 9517 (95%) 0.24 0.41 6212 15
3 Split 3 9387 (94%) 0.33 0.49 6126 9
3 Split 4 9134 (91%) 0.12 0.55 5566 8
3 Resample 5919 (59%) NA 0.53 7718 NA
4 Split 1 9666 (97%) 0.22 0.35 6319 18
4 Split 2 9543 (95%) 0.34 0.39 6236 10
4 Split 3 9402 (94%) 0.38 0.48 6114 7
4 Split 4 9178 (92%) 0.18 0.55 5587 5

GLENDORA

4 Resample 6342 (63%) NA 0.53 7749 NA
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Table E-7: redist Plan Diagnostics (continued)

City Run Step Eff. samples (%) Acc. rate Log wgt. sd Max. unique Est. k

1 Split 1 9693 (97%) 0.22 0.35 6335 20
1 Split 2 9231 (92%) 0.38 0.47 6175 11
1 Split 3 8893 (89%) 0.19 0.58 5604 7
1 Resample 4886 (49%) NA 0.57 7430 NA
2 Split 1 9693 (97%) 0.25 0.35 6326 18
2 Split 2 9196 (92%) 0.42 0.47 6099 10
2 Split 3 8991 (90%) 0.22 0.56 5606 6
2 Resample 5323 (53%) NA 0.55 7553 NA
3 Split 1 9686 (97%) 0.24 0.35 6345 19
3 Split 2 9276 (93%) 0.39 0.46 6090 11
3 Split 3 9083 (91%) 0.17 0.54 5533 8
3 Resample 5789 (58%) NA 0.54 7649 NA
4 Split 1 9689 (97%) 0.19 0.35 6260 24
4 Split 2 9248 (92%) 0.33 0.47 6109 13
4 Split 3 9062 (91%) 0.19 0.55 5596 7

HALFMOONBAY

4 Resample 5773 (58%) NA 0.54 7642 NA

1 Split 1 9661 (97%) 0.13 0.38 6317 19
1 Split 2 9451 (95%) 0.19 0.43 6214 11
1 Split 3 9188 (92%) 0.25 0.54 6124 7
1 Split 4 8930 (89%) 0.11 0.60 5487 5
1 Resample 5266 (53%) NA 0.59 7448 NA
2 Split 1 9662 (97%) 0.16 0.38 6313 16
2 Split 2 9460 (95%) 0.19 0.43 6276 11
2 Split 3 9191 (92%) 0.25 0.54 6051 7
2 Split 4 8818 (88%) 0.13 0.63 5472 4
2 Resample 4987 (50%) NA 0.61 7281 NA
3 Split 1 9665 (97%) 0.15 0.38 6374 17
3 Split 2 9454 (95%) 0.21 0.42 6252 10
3 Split 3 9181 (92%) 0.29 0.54 6089 6
3 Split 4 8935 (89%) 0.13 0.61 5534 4
3 Resample 5617 (56%) NA 0.60 7411 NA
4 Split 1 9661 (97%) 0.16 0.38 6328 16
4 Split 2 9440 (94%) 0.23 0.43 6281 9
4 Split 3 9171 (92%) 0.29 0.54 6138 6
4 Split 4 8905 (89%) 0.13 0.61 5563 4

HEMET

4 Resample 5297 (53%) NA 0.60 7363 NA

1 Split 1 9798 (98%) 0.19 0.28 6352 14
1 Split 2 9545 (95%) 0.28 0.42 6250 8
1 Split 3 9261 (93%) 0.25 0.51 6175 8
1 Split 4 9160 (92%) 0.08 0.54 5640 8
1 Resample 6327 (63%) NA 0.53 7772 NA
2 Split 1 9802 (98%) 0.17 0.28 6286 16
2 Split 2 9538 (95%) 0.26 0.42 6248 9
2 Split 3 9223 (92%) 0.17 0.50 6196 12
2 Split 4 8919 (89%) 0.09 0.57 5689 7
2 Resample 4450 (45%) NA 0.56 7523 NA
3 Split 1 9798 (98%) 0.12 0.28 6309 23
3 Split 2 9546 (95%) 0.18 0.43 6265 13
3 Split 3 9248 (92%) 0.25 0.50 6178 8
3 Split 4 8986 (90%) 0.07 0.57 5721 9
3 Resample 5404 (54%) NA 0.56 7548 NA
4 Split 1 9800 (98%) 0.13 0.28 6313 21
4 Split 2 9591 (96%) 0.21 0.41 6236 11
4 Split 3 9294 (93%) 0.28 0.50 6195 7
4 Split 4 8967 (90%) 0.14 0.57 5605 4

HESPERIA

4 Resample 4888 (49%) NA 0.56 7559 NA

1 Split 1 9811 (98%) 0.23 0.27 6265 24
1 Split 2 9594 (96%) 0.36 0.39 6231 13
1 Split 3 9281 (93%) 0.19 0.48 5748 8
1 Resample 6537 (65%) NA 0.48 7968 NA
2 Split 1 9807 (98%) 0.22 0.28 6273 25
2 Split 2 9582 (96%) 0.34 0.39 6219 14
2 Split 3 9307 (93%) 0.19 0.47 5724 8
2 Resample 6656 (67%) NA 0.47 7987 NA
3 Split 1 9815 (98%) 0.24 0.27 6308 22
3 Split 2 9595 (96%) 0.39 0.38 6232 12
3 Split 3 9295 (93%) 0.21 0.47 5769 7
3 Resample 6369 (64%) NA 0.47 7998 NA
4 Split 1 9809 (98%) 0.20 0.28 6350 27
4 Split 2 9592 (96%) 0.32 0.39 6255 15
4 Split 3 9259 (93%) 0.17 0.48 5740 9

IMPERIALBEACH

4 Resample 6326 (63%) NA 0.48 7946 NA
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Table E-7: redist Plan Diagnostics (continued)

City Run Step Eff. samples (%) Acc. rate Log wgt. sd Max. unique Est. k

1 Split 1 9651 (97%) 0.17 0.37 6359 21
1 Split 2 9408 (94%) 0.18 0.45 6186 19
1 Split 3 9169 (92%) 0.26 0.55 6131 11
1 Split 4 8870 (89%) 0.09 0.65 5576 11
1 Resample 5212 (52%) NA 0.61 7342 NA
2 Split 1 9641 (96%) 0.13 0.38 6372 27
2 Split 2 9356 (94%) 0.22 0.45 6199 15
2 Split 3 9126 (91%) 0.34 0.56 6122 8
2 Split 4 8976 (90%) 0.16 0.63 5575 5
2 Resample 5945 (59%) NA 0.60 7450 NA
3 Split 1 9639 (96%) 0.15 0.38 6341 25
3 Split 2 9384 (94%) 0.14 0.45 6218 24
3 Split 3 9192 (92%) 0.23 0.55 6119 13
3 Split 4 8901 (89%) 0.13 0.64 5623 7
3 Resample 5412 (54%) NA 0.60 7360 NA
4 Split 1 9637 (96%) 0.14 0.38 6270 26
4 Split 2 9426 (94%) 0.24 0.44 6141 14
4 Split 3 9163 (92%) 0.20 0.55 6123 15
4 Split 4 8835 (88%) 0.11 0.64 5543 8

INDIO

4 Resample 4953 (50%) NA 0.61 7318 NA

1 Split 1 9794 (98%) 0.24 0.29 6356 21
1 Split 2 9525 (95%) 0.36 0.41 6240 12
1 Split 3 9189 (92%) 0.36 0.51 6194 10
1 Split 4 9186 (92%) 0.14 0.54 5765 9
1 Resample 6328 (63%) NA 0.52 7748 NA
2 Split 1 9799 (98%) 0.22 0.29 6346 23
2 Split 2 9497 (95%) 0.34 0.41 6263 13
2 Split 3 9204 (92%) 0.43 0.51 6237 8
2 Split 4 9033 (90%) 0.12 0.56 5725 10
2 Resample 5537 (55%) NA 0.55 7587 NA
3 Split 1 9797 (98%) 0.18 0.29 6305 28
3 Split 2 9515 (95%) 0.30 0.42 6280 15
3 Split 3 9178 (92%) 0.27 0.51 6153 14
3 Split 4 8976 (90%) 0.09 0.57 5746 14
3 Resample 5175 (52%) NA 0.56 7542 NA
4 Split 1 9800 (98%) 0.20 0.28 6351 26
4 Split 2 9532 (95%) 0.32 0.41 6266 14
4 Split 3 9238 (92%) 0.33 0.50 6188 11
4 Split 4 9088 (91%) 0.19 0.56 5675 6

JURUPAVALLEY

4 Resample 5930 (59%) NA 0.54 7666 NA

1 Split 1 9660 (97%) 0.18 0.37 6343 30
1 Split 2 9463 (95%) 0.27 0.42 6261 17
1 Split 3 9209 (92%) 0.36 0.52 6203 10
1 Split 4 9024 (90%) 0.18 0.61 5562 6
1 Resample 5574 (56%) NA 0.56 7555 NA
2 Split 1 9660 (97%) 0.19 0.38 6343 28
2 Split 2 9458 (95%) 0.30 0.43 6215 15
2 Split 3 9109 (91%) 0.39 0.54 6136 9
2 Split 4 9023 (90%) 0.18 0.61 5622 6
2 Resample 5644 (56%) NA 0.56 7556 NA
3 Split 1 9662 (97%) 0.22 0.37 6341 24
3 Split 2 9492 (95%) 0.35 0.42 6233 13
3 Split 3 9213 (92%) 0.42 0.52 6179 8
3 Split 4 9093 (91%) 0.16 0.59 5626 7
3 Resample 6007 (60%) NA 0.55 7642 NA
4 Split 1 9663 (97%) 0.22 0.37 6334 24
4 Split 2 9455 (95%) 0.35 0.43 6269 13
4 Split 3 9183 (92%) 0.44 0.53 6126 8
4 Split 4 9119 (91%) 0.21 0.59 5555 5

LAKEFOREST

4 Resample 6006 (60%) NA 0.55 7666 NA
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Table E-7: redist Plan Diagnostics (continued)

City Run Step Eff. samples (%) Acc. rate Log wgt. sd Max. unique Est. k

1 Split 1 9718 (97%) 0.20 0.33 6285 21
1 Split 2 9545 (95%) 0.30 0.41 6184 12
1 Split 3 9296 (93%) 0.43 0.51 6124 7
1 Split 4 9072 (91%) 0.19 0.56 5599 5
1 Resample 5791 (58%) NA 0.55 7636 NA
2 Split 1 9714 (97%) 0.26 0.34 6301 16
2 Split 2 9543 (95%) 0.39 0.41 6187 9
2 Split 3 9326 (93%) 0.34 0.51 6138 9
2 Split 4 9093 (91%) 0.19 0.56 5509 5
2 Resample 5964 (60%) NA 0.55 7612 NA
3 Split 1 9712 (97%) 0.23 0.34 6362 18
3 Split 2 9532 (95%) 0.36 0.42 6281 10
3 Split 3 9356 (94%) 0.35 0.50 6124 9
3 Split 4 9159 (92%) 0.19 0.54 5564 5
3 Resample 6483 (65%) NA 0.54 7728 NA
4 Split 1 9717 (97%) 0.18 0.34 6300 23
4 Split 2 9533 (95%) 0.28 0.41 6282 13
4 Split 3 9326 (93%) 0.38 0.50 6152 8
4 Split 4 8951 (90%) 0.19 0.59 5545 5

LAMIRADA

4 Resample 5445 (54%) NA 0.57 7479 NA

1 Split 1 9542 (95%) 0.23 0.41 6288 40
1 Split 2 9157 (92%) 0.38 0.55 6252 21
1 Split 3 8575 (86%) 0.55 0.71 6061 12
1 Split 4 8332 (83%) 0.31 0.74 5492 7
1 Resample 3800 (38%) NA 0.72 6742 NA
2 Split 1 9553 (96%) 0.27 0.40 6378 34
2 Split 2 9172 (92%) 0.44 0.54 6161 18
2 Split 3 8620 (86%) 0.47 0.70 6063 15
2 Split 4 8369 (84%) 0.26 0.72 5492 9
2 Resample 3911 (39%) NA 0.72 6739 NA
3 Split 1 9560 (96%) 0.18 0.40 6308 51
3 Split 2 9142 (91%) 0.30 0.55 6196 27
3 Split 3 8605 (86%) 0.47 0.71 6028 15
3 Split 4 8334 (83%) 0.26 0.72 5448 9
3 Resample 3335 (33%) NA 0.71 6776 NA
4 Split 1 9539 (95%) 0.29 0.41 6245 32
4 Split 2 9193 (92%) 0.46 0.54 6196 17
4 Split 3 8654 (87%) 0.45 0.69 6123 16
4 Split 4 8223 (82%) 0.26 0.75 5571 9

LINCOLN

4 Resample 3557 (36%) NA 0.74 6611 NA

1 Split 1 9778 (98%) 0.10 0.30 6335 23
1 Split 2 9610 (96%) 0.18 0.39 6241 12
1 Split 3 9308 (93%) 0.26 0.48 6140 7
1 Split 4 9111 (91%) 0.13 0.54 5620 4
1 Resample 6192 (62%) NA 0.55 7648 NA
2 Split 1 9770 (98%) 0.08 0.30 6362 29
2 Split 2 9603 (96%) 0.14 0.40 6252 15
2 Split 3 9193 (92%) 0.23 0.50 6097 8
2 Split 4 8929 (89%) 0.11 0.56 5611 5
2 Resample 4615 (46%) NA 0.56 7526 NA
3 Split 1 9774 (98%) 0.15 0.30 6310 16
3 Split 2 9610 (96%) 0.23 0.39 6252 9
3 Split 3 9215 (92%) 0.28 0.48 6190 6
3 Split 4 9034 (90%) 0.13 0.55 5649 4
3 Resample 5631 (56%) NA 0.55 7642 NA
4 Split 1 9775 (98%) 0.09 0.30 6347 25
4 Split 2 9571 (96%) 0.16 0.40 6287 14
4 Split 3 9288 (93%) 0.23 0.49 6122 8
4 Split 4 9103 (91%) 0.11 0.54 5648 5

LODI

4 Resample 6057 (61%) NA 0.54 7628 NA
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Table E-7: redist Plan Diagnostics (continued)

City Run Step Eff. samples (%) Acc. rate Log wgt. sd Max. unique Est. k

1 Split 1 9686 (97%) 0.32 0.34 6357 70
1 Split 2 9442 (94%) 0.52 0.45 6117 36
1 Split 3 8932 (89%) 0.26 0.57 5663 23
1 Resample 4936 (49%) NA 0.57 7483 NA
2 Split 1 9675 (97%) 0.34 0.35 6382 67
2 Split 2 9449 (94%) 0.51 0.45 6230 36
2 Split 3 8982 (90%) 0.31 0.56 5692 19
2 Resample 5137 (51%) NA 0.56 7525 NA
3 Split 1 9683 (97%) 0.33 0.34 6326 68
3 Split 2 9474 (95%) 0.53 0.44 6144 35
3 Split 3 8972 (90%) 0.32 0.57 5680 19
3 Resample 5021 (50%) NA 0.56 7558 NA
4 Split 1 9673 (97%) 0.37 0.35 6302 61
4 Split 2 9461 (95%) 0.57 0.44 6139 32
4 Split 3 8914 (89%) 0.34 0.57 5661 17

LOMPOC

4 Resample 4549 (45%) NA 0.57 7443 NA

1 Split 1 9780 (98%) 0.20 0.30 6338 22
1 Split 2 9519 (95%) 0.29 0.41 6155 12
1 Split 3 9205 (92%) 0.16 0.51 5642 7
1 Resample 5835 (58%) NA 0.49 7884 NA
2 Split 1 9777 (98%) 0.20 0.30 6316 22
2 Split 2 9486 (95%) 0.29 0.42 6226 12
2 Split 3 9164 (92%) 0.14 0.51 5576 8
2 Resample 5330 (53%) NA 0.49 7864 NA
3 Split 1 9774 (98%) 0.22 0.30 6301 20
3 Split 2 9523 (95%) 0.32 0.41 6236 11
3 Split 3 9168 (92%) 0.16 0.51 5569 7
3 Resample 5644 (56%) NA 0.49 7876 NA
4 Split 1 9782 (98%) 0.21 0.30 6318 21
4 Split 2 9510 (95%) 0.29 0.41 6210 12
4 Split 3 9203 (92%) 0.16 0.51 5627 7

LOSBANOS

4 Resample 5819 (58%) NA 0.49 7868 NA

1 Split 1 9513 (95%) 0.34 0.43 6383 32
1 Split 2 9382 (94%) 0.36 0.47 6239 29
1 Split 3 9166 (92%) 0.55 0.53 6253 19
1 Split 4 9068 (91%) 0.29 0.54 5772 11
1 Resample 6813 (68%) NA 0.63 7548 NA
2 Split 1 9509 (95%) 0.25 0.43 6295 43
2 Split 2 9373 (94%) 0.39 0.48 6208 27
2 Split 3 9146 (91%) 0.60 0.54 6166 17
2 Split 4 9074 (91%) 0.29 0.53 5770 11
2 Resample 6709 (67%) NA 0.63 7577 NA
3 Split 1 9510 (95%) 0.31 0.43 6334 35
3 Split 2 9370 (94%) 0.46 0.48 6304 23
3 Split 3 9164 (92%) 0.72 0.53 6234 13
3 Split 4 9082 (91%) 0.19 0.53 5858 18
3 Resample 6771 (68%) NA 0.63 7555 NA
4 Split 1 9522 (95%) 0.24 0.43 6300 45
4 Split 2 9371 (94%) 0.41 0.48 6190 26
4 Split 3 9164 (92%) 0.65 0.53 6203 15
4 Split 4 9076 (91%) 0.33 0.54 5726 9

MENLOPARK

4 Resample 6732 (67%) NA 0.63 7584 NA

1 Split 1 9650 (96%) 0.09 0.37 6280 16
1 Split 2 9485 (95%) 0.14 0.43 6232 9
1 Split 3 9409 (94%) 0.21 0.48 6161 5
1 Split 4 9231 (92%) 0.06 0.54 5645 6
1 Resample 6861 (69%) NA 0.52 7825 NA
2 Split 1 9641 (96%) 0.11 0.37 6319 13
2 Split 2 9523 (95%) 0.16 0.42 6215 8
2 Split 3 9346 (93%) 0.13 0.49 6134 9
2 Split 4 9086 (91%) 0.07 0.58 5628 5
2 Resample 6308 (63%) NA 0.56 7613 NA
3 Split 1 9644 (96%) 0.13 0.37 6336 11
3 Split 2 9548 (95%) 0.13 0.41 6189 10
3 Split 3 9391 (94%) 0.16 0.49 6078 7
3 Split 4 9025 (90%) 0.07 0.57 5658 5
3 Resample 5709 (57%) NA 0.56 7581 NA
4 Split 1 9629 (96%) 0.10 0.38 6392 15
4 Split 2 9509 (95%) 0.15 0.42 6215 9
4 Split 3 9283 (93%) 0.19 0.50 6121 6
4 Split 4 9104 (91%) 0.09 0.57 5608 4

MONTEREYPARK

4 Resample 6329 (63%) NA 0.56 7663 NA
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Table E-7: redist Plan Diagnostics (continued)

City Run Step Eff. samples (%) Acc. rate Log wgt. sd Max. unique Est. k

1 Split 1 9714 (97%) 0.32 0.33 6324 41
1 Split 2 9428 (94%) 0.52 0.43 6264 22
1 Split 3 9196 (92%) 0.64 0.53 6213 14
1 Split 4 9059 (91%) 0.31 0.57 5662 9
1 Resample 5538 (55%) NA 0.55 7612 NA
2 Split 1 9713 (97%) 0.30 0.33 6306 43
2 Split 2 9477 (95%) 0.47 0.43 6218 25
2 Split 3 9190 (92%) 0.63 0.53 6203 14
2 Split 4 8944 (89%) 0.23 0.59 5664 13
2 Resample 4968 (50%) NA 0.57 7493 NA
3 Split 1 9718 (97%) 0.31 0.33 6330 43
3 Split 2 9484 (95%) 0.48 0.43 6254 24
3 Split 3 9225 (92%) 0.66 0.53 6227 13
3 Split 4 9015 (90%) 0.25 0.58 5667 12
3 Resample 5100 (51%) NA 0.56 7550 NA
4 Split 1 9712 (97%) 0.23 0.33 6273 59
4 Split 2 9447 (94%) 0.39 0.44 6251 31
4 Split 3 9187 (92%) 0.55 0.54 6213 17
4 Split 4 8984 (90%) 0.30 0.59 5648 9

MURRIETA

4 Resample 5239 (52%) NA 0.57 7488 NA

1 Split 1 9745 (97%) 0.27 0.31 6347 42
1 Split 2 9486 (95%) 0.45 0.43 6234 22
1 Split 3 9006 (90%) 0.24 0.55 5769 13
1 Resample 5171 (52%) NA 0.54 7613 NA
2 Split 1 9749 (97%) 0.33 0.31 6327 35
2 Split 2 9489 (95%) 0.51 0.44 6214 19
2 Split 3 9044 (90%) 0.28 0.54 5800 11
2 Resample 5103 (51%) NA 0.53 7661 NA
3 Split 1 9742 (97%) 0.31 0.31 6296 37
3 Split 2 9522 (95%) 0.48 0.42 6206 20
3 Split 3 9006 (90%) 0.28 0.54 5716 11
3 Resample 4345 (43%) NA 0.53 7628 NA
4 Split 1 9749 (97%) 0.24 0.31 6328 47
4 Split 2 9519 (95%) 0.40 0.42 6213 25
4 Split 3 9119 (91%) 0.22 0.53 5789 15

NAPA

4 Resample 5320 (53%) NA 0.52 7749 NA

1 Split 1 9691 (97%) 0.30 0.35 6345 22
1 Split 2 9368 (94%) 0.48 0.46 6282 12
1 Split 3 9097 (91%) 0.37 0.53 6121 14
1 Split 4 8964 (90%) 0.20 0.60 5529 8
1 Resample 5508 (55%) NA 0.58 7455 NA
2 Split 1 9692 (97%) 0.28 0.35 6312 24
2 Split 2 9401 (94%) 0.45 0.46 6252 13
2 Split 3 9183 (92%) 0.40 0.51 6131 13
2 Split 4 9024 (90%) 0.17 0.57 5583 10
2 Resample 5396 (54%) NA 0.56 7627 NA
3 Split 1 9703 (97%) 0.25 0.35 6364 27
3 Split 2 9410 (94%) 0.40 0.46 6194 15
3 Split 3 9221 (92%) 0.46 0.51 6152 11
3 Split 4 9078 (91%) 0.22 0.58 5595 7
3 Resample 5950 (59%) NA 0.55 7643 NA
4 Split 1 9701 (97%) 0.21 0.35 6317 32
4 Split 2 9383 (94%) 0.36 0.46 6221 17
4 Split 3 9184 (92%) 0.49 0.52 6123 10
4 Split 4 9019 (90%) 0.25 0.59 5547 6

NOVATO

4 Resample 5758 (58%) NA 0.57 7550 NA

1 Split 1 9854 (99%) 0.29 0.24 6342 24
1 Split 2 9697 (97%) 0.44 0.35 6201 14
1 Split 3 9487 (95%) 0.24 0.43 5716 8
1 Resample 7614 (76%) NA 0.42 8245 NA
2 Split 1 9856 (99%) 0.24 0.24 6297 29
2 Split 2 9707 (97%) 0.38 0.34 6229 16
2 Split 3 9490 (95%) 0.22 0.43 5711 9
2 Resample 7531 (75%) NA 0.42 8275 NA
3 Split 1 9854 (99%) 0.28 0.24 6313 25
3 Split 2 9688 (97%) 0.43 0.35 6230 14
3 Split 3 9466 (95%) 0.24 0.44 5688 8
3 Resample 7409 (74%) NA 0.43 8255 NA
4 Split 1 9853 (99%) 0.29 0.25 6381 24
4 Split 2 9704 (97%) 0.46 0.35 6252 13
4 Split 3 9520 (95%) 0.24 0.42 5744 8

OJAI

4 Resample 7828 (78%) NA 0.42 8283 NA
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Table E-7: redist Plan Diagnostics (continued)

City Run Step Eff. samples (%) Acc. rate Log wgt. sd Max. unique Est. k

1 Split 1 9356 (94%) 0.33 0.49 6294 40
1 Split 2 9079 (91%) 0.51 0.58 6147 21
1 Split 3 9026 (90%) 0.52 0.57 6059 18
1 Split 4 8930 (89%) 0.63 0.62 6081 10
1 Split 5 8656 (87%) 0.24 0.69 5485 10
1 Resample 4718 (47%) NA 0.67 7032 NA
2 Split 1 9376 (94%) 0.31 0.48 6330 41
2 Split 2 9061 (91%) 0.48 0.58 6131 23
2 Split 3 9013 (90%) 0.63 0.59 6170 13
2 Split 4 8800 (88%) 0.69 0.65 6099 8
2 Split 5 8506 (85%) 0.34 0.73 5397 5
2 Resample 4519 (45%) NA 0.71 6876 NA
3 Split 1 9382 (94%) 0.28 0.48 6305 47
3 Split 2 9093 (91%) 0.45 0.57 6098 25
3 Split 3 8994 (90%) 0.61 0.59 6125 14
3 Split 4 8897 (89%) 0.63 0.63 6061 10
3 Split 5 8747 (87%) 0.32 0.69 5427 6
3 Resample 5353 (54%) NA 0.66 7090 NA
4 Split 1 9354 (94%) 0.27 0.49 6397 48
4 Split 2 9099 (91%) 0.28 0.58 6136 42
4 Split 3 8988 (90%) 0.45 0.58 6083 22
4 Split 4 8821 (88%) 0.57 0.66 6053 12
4 Split 5 8663 (87%) 0.29 0.71 5422 7

ORANGE

4 Resample 5285 (53%) NA 0.69 7016 NA

1 Split 1 9656 (97%) 0.36 0.37 6366 46
1 Split 2 9444 (94%) 0.41 0.46 6256 38
1 Split 3 9230 (92%) 0.53 0.53 6159 25
1 Split 4 9022 (90%) 0.66 0.58 6104 14
1 Split 5 8798 (88%) 0.33 0.63 5448 8
1 Resample 4167 (42%) NA 0.60 7339 NA
2 Split 1 9676 (97%) 0.33 0.36 6352 50
2 Split 2 9460 (95%) 0.56 0.46 6221 26
2 Split 3 9161 (92%) 0.58 0.54 6193 22
2 Split 4 9015 (90%) 0.67 0.58 6118 13
2 Split 5 8946 (89%) 0.27 0.60 5437 12
2 Resample 5161 (52%) NA 0.58 7484 NA
3 Split 1 9665 (97%) 0.34 0.36 6299 48
3 Split 2 9388 (94%) 0.57 0.47 6211 25
3 Split 3 9261 (93%) 0.72 0.53 6158 14
3 Split 4 9086 (91%) 0.77 0.57 6098 8
3 Split 5 8951 (90%) 0.33 0.61 5500 8
3 Resample 5485 (55%) NA 0.58 7447 NA
4 Split 1 9661 (97%) 0.27 0.36 6300 61
4 Split 2 9454 (95%) 0.47 0.46 6249 32
4 Split 3 9237 (92%) 0.55 0.53 6188 24
4 Split 4 9042 (90%) 0.67 0.58 6100 13
4 Split 5 9027 (90%) 0.34 0.59 5464 7

OXNARD

4 Resample 5432 (54%) NA 0.57 7549 NA

1 Split 1 9735 (97%) 0.24 0.33 6362 29
1 Split 2 9134 (91%) 0.39 0.60 6232 19
1 Split 3 8943 (89%) 0.57 0.59 6112 11
1 Split 4 8818 (88%) 0.26 0.64 5512 7
1 Resample 5393 (54%) NA 0.65 7282 NA
2 Split 1 9739 (97%) 0.21 0.33 6272 33
2 Split 2 9126 (91%) 0.41 0.60 6215 18
2 Split 3 8950 (89%) 0.61 0.60 6151 10
2 Split 4 8793 (88%) 0.29 0.64 5517 6
2 Resample 5127 (51%) NA 0.65 7285 NA
3 Split 1 9731 (97%) 0.23 0.34 6373 31
3 Split 2 9187 (92%) 0.43 0.59 6189 17
3 Split 3 8989 (90%) 0.45 0.59 6087 15
3 Split 4 8846 (88%) 0.12 0.63 5558 17
3 Resample 5384 (54%) NA 0.65 7290 NA
4 Split 1 9733 (97%) 0.28 0.33 6301 25
4 Split 2 9083 (91%) 0.50 0.61 6229 14
4 Split 3 8965 (90%) 0.43 0.59 6089 16
4 Split 4 8858 (89%) 0.17 0.64 5612 12

PACIFICA

4 Resample 5721 (57%) NA 0.65 7293 NA
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Table E-7: redist Plan Diagnostics (continued)

City Run Step Eff. samples (%) Acc. rate Log wgt. sd Max. unique Est. k

1 Split 1 9481 (95%) 0.12 0.48 6319 19
1 Split 2 9441 (94%) 0.16 0.40 6234 11
1 Split 3 9192 (92%) 0.08 0.51 5880 7
1 Resample 5702 (57%) NA 0.51 7825 NA
2 Split 1 9474 (95%) 0.16 0.49 6275 14
2 Split 2 9537 (95%) 0.16 0.38 6231 11
2 Split 3 9329 (93%) 0.08 0.48 5894 7
2 Resample 7222 (72%) NA 0.49 7925 NA
3 Split 1 9485 (95%) 0.09 0.48 6296 24
3 Split 2 9526 (95%) 0.12 0.39 6256 15
3 Split 3 9227 (92%) 0.06 0.49 5861 9
3 Resample 5593 (56%) NA 0.50 7810 NA
4 Split 1 9484 (95%) 0.17 0.48 6329 13
4 Split 2 9532 (95%) 0.15 0.39 6290 12
4 Split 3 9293 (93%) 0.08 0.49 5859 7

PALMDALE

4 Resample 6922 (69%) NA 0.50 7887 NA

1 Split 1 9583 (96%) 0.20 0.39 6328 32
1 Split 2 9211 (92%) 0.34 0.49 6222 18
1 Split 3 8849 (88%) 0.49 0.59 6112 10
1 Split 4 8698 (87%) 0.25 0.66 5560 6
1 Resample 4552 (46%) NA 0.64 7109 NA
2 Split 1 9581 (96%) 0.22 0.39 6299 30
2 Split 2 9197 (92%) 0.37 0.50 6209 16
2 Split 3 8914 (89%) 0.52 0.59 6164 9
2 Split 4 8805 (88%) 0.24 0.64 5651 6
2 Resample 4824 (48%) NA 0.62 7304 NA
3 Split 1 9581 (96%) 0.26 0.39 6308 25
3 Split 2 9154 (92%) 0.42 0.50 6246 14
3 Split 3 8944 (89%) 0.49 0.59 6107 10
3 Split 4 8832 (88%) 0.20 0.63 5651 8
3 Resample 5136 (51%) NA 0.62 7255 NA
4 Split 1 9598 (96%) 0.20 0.38 6285 33
4 Split 2 9230 (92%) 0.34 0.48 6265 18
4 Split 3 8917 (89%) 0.48 0.58 6142 10
4 Split 4 8870 (89%) 0.24 0.62 5555 6

PALMSPRINGS

4 Resample 5206 (52%) NA 0.61 7298 NA

1 Split 1 9709 (97%) 0.20 0.35 6341 38
1 Split 2 9531 (95%) 0.25 0.39 6038 22
1 Split 3 9256 (93%) 0.36 0.49 6095 12
1 Split 4 9111 (91%) 0.18 0.57 5553 7
1 Resample 5952 (60%) NA 0.54 7687 NA
2 Split 1 9713 (97%) 0.28 0.34 6263 27
2 Split 2 9562 (96%) 0.36 0.38 6082 15
2 Split 3 9340 (93%) 0.48 0.47 6088 8
2 Split 4 8888 (89%) 0.23 0.59 5513 5
2 Resample 4683 (47%) NA 0.57 7493 NA
3 Split 1 9707 (97%) 0.31 0.35 6322 25
3 Split 2 9523 (95%) 0.38 0.39 6094 14
3 Split 3 9181 (92%) 0.49 0.50 6191 8
3 Split 4 8981 (90%) 0.23 0.58 5556 5
3 Resample 5031 (50%) NA 0.56 7576 NA
4 Split 1 9720 (97%) 0.30 0.34 6344 26
4 Split 2 9529 (95%) 0.38 0.39 6068 14
4 Split 3 9306 (93%) 0.45 0.48 6152 9
4 Split 4 9102 (91%) 0.23 0.55 5570 5

PLACENTIA

4 Resample 5430 (54%) NA 0.53 7705 NA

A-36



Table E-7: redist Plan Diagnostics (continued)

City Run Step Eff. samples (%) Acc. rate Log wgt. sd Max. unique Est. k

1 Split 1 9638 (96%) 0.29 0.37 6266 43
1 Split 2 9456 (95%) 0.45 0.45 6148 23
1 Split 3 9286 (93%) 0.59 0.50 6124 13
1 Split 4 8977 (90%) 0.26 0.59 5607 10
1 Resample 5496 (55%) NA 0.58 7516 NA
2 Split 1 9637 (96%) 0.29 0.37 6354 44
2 Split 2 9504 (95%) 0.44 0.44 6215 24
2 Split 3 9267 (93%) 0.52 0.50 6185 16
2 Split 4 8853 (89%) 0.28 0.62 5549 9
2 Resample 5083 (51%) NA 0.60 7359 NA
3 Split 1 9639 (96%) 0.27 0.37 6358 46
3 Split 2 9498 (95%) 0.43 0.44 6234 24
3 Split 3 9275 (93%) 0.58 0.50 6158 13
3 Split 4 8893 (89%) 0.24 0.59 5633 11
3 Resample 4433 (44%) NA 0.58 7452 NA
4 Split 1 9628 (96%) 0.26 0.38 6334 48
4 Split 2 9485 (95%) 0.43 0.44 6166 25
4 Split 3 9308 (93%) 0.52 0.49 6154 16
4 Split 4 8985 (90%) 0.27 0.59 5617 9

PORTERVILLE

4 Resample 5655 (57%) NA 0.58 7499 NA

1 Split 1 9812 (98%) 0.23 0.27 6313 14
1 Split 2 9596 (96%) 0.36 0.39 6165 8
1 Split 3 9290 (93%) 0.17 0.48 5328 5
1 Resample 6544 (65%) NA 0.48 8005 NA
2 Split 1 9814 (98%) 0.16 0.27 6349 21
2 Split 2 9602 (96%) 0.25 0.39 6115 12
2 Split 3 9289 (93%) 0.13 0.48 5355 7
2 Resample 6471 (65%) NA 0.48 7941 NA
3 Split 1 9810 (98%) 0.22 0.27 6307 15
3 Split 2 9606 (96%) 0.33 0.39 6146 9
3 Split 3 9295 (93%) 0.13 0.48 5339 7
3 Resample 6550 (65%) NA 0.48 7948 NA
4 Split 1 9810 (98%) 0.20 0.28 6313 17
4 Split 2 9577 (96%) 0.30 0.40 6186 10
4 Split 3 9372 (94%) 0.15 0.47 5340 6

POWAY

4 Resample 7270 (73%) NA 0.47 8016 NA

1 Split 1 9841 (98%) 0.21 0.25 6292 31
1 Split 2 9668 (97%) 0.33 0.36 6331 17
1 Split 3 9371 (94%) 0.19 0.45 5813 9
1 Resample 7033 (70%) NA 0.45 8123 NA
2 Split 1 9847 (98%) 0.24 0.25 6339 27
2 Split 2 9689 (97%) 0.39 0.35 6315 14
2 Split 3 9353 (94%) 0.21 0.46 5829 8
2 Resample 6914 (69%) NA 0.46 8053 NA
3 Split 1 9847 (98%) 0.27 0.25 6263 24
3 Split 2 9679 (97%) 0.41 0.36 6268 13
3 Split 3 9381 (94%) 0.20 0.45 5873 9
3 Resample 7015 (70%) NA 0.45 8110 NA
4 Split 1 9847 (98%) 0.21 0.25 6346 31
4 Split 2 9671 (97%) 0.33 0.36 6272 17
4 Split 3 9342 (93%) 0.20 0.46 5835 9

RANCHOCUCAMONGA

4 Resample 6638 (66%) NA 0.46 8065 NA

1 Split 1 9824 (98%) 0.15 0.27 6329 13
1 Split 2 9600 (96%) 0.18 0.41 6252 10
1 Split 3 9322 (93%) 0.25 0.48 6180 6
1 Split 4 9098 (91%) 0.11 0.54 5612 4
1 Resample 5254 (53%) NA 0.53 7695 NA
2 Split 1 9828 (98%) 0.07 0.26 6309 29
2 Split 2 9556 (96%) 0.11 0.43 6165 16
2 Split 3 9341 (93%) 0.18 0.48 6157 9
2 Split 4 9159 (92%) 0.08 0.54 5655 6
2 Resample 6281 (63%) NA 0.53 7763 NA
3 Split 1 9830 (98%) 0.09 0.26 6332 21
3 Split 2 9554 (96%) 0.15 0.43 6208 12
3 Split 3 9229 (92%) 0.22 0.49 6141 7
3 Split 4 9189 (92%) 0.11 0.53 5612 4
3 Resample 6395 (64%) NA 0.52 7755 NA
4 Split 1 9822 (98%) 0.08 0.27 6352 25
4 Split 2 9583 (96%) 0.13 0.42 6265 14
4 Split 3 9296 (93%) 0.20 0.47 6119 8
4 Split 4 9043 (90%) 0.10 0.54 5668 5

REDLANDS

4 Resample 5119 (51%) NA 0.53 7611 NA
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Table E-7: redist Plan Diagnostics (continued)

City Run Step Eff. samples (%) Acc. rate Log wgt. sd Max. unique Est. k

1 Split 1 9134 (91%) 0.51 0.58 6281 93
1 Split 2 9291 (93%) 0.76 0.50 6173 49
1 Split 3 9268 (93%) 0.87 0.50 6200 31
1 Split 4 9154 (92%) 0.76 0.57 6209 34
1 Split 5 9030 (90%) 0.78 0.61 5994 18
1 Split 6 8774 (88%) 0.44 0.66 5182 10
1 Resample 4278 (43%) NA 0.61 7334 NA
2 Split 1 9118 (91%) 0.47 0.58 6361 100
2 Split 2 9277 (93%) 0.73 0.49 6160 53
2 Split 3 9275 (93%) 0.90 0.50 6230 28
2 Split 4 9119 (91%) 0.80 0.57 6215 31
2 Split 5 9024 (90%) 0.78 0.62 5992 17
2 Split 6 8816 (88%) 0.34 0.66 5309 17
2 Resample 4839 (48%) NA 0.62 7290 NA
3 Split 1 9113 (91%) 0.48 0.58 6365 98
3 Split 2 9288 (93%) 0.73 0.50 6199 52
3 Split 3 9250 (93%) 0.85 0.51 6201 33
3 Split 4 9181 (92%) 0.94 0.56 6160 19
3 Split 5 9124 (91%) 0.85 0.60 6032 11
3 Split 6 8988 (90%) 0.41 0.61 5221 12
3 Resample 5340 (53%) NA 0.58 7506 NA
4 Split 1 9121 (91%) 0.53 0.58 6338 91
4 Split 2 9247 (92%) 0.74 0.50 6185 52
4 Split 3 9268 (93%) 0.80 0.51 6153 38
4 Split 4 9188 (92%) 0.73 0.56 6200 36
4 Split 5 8949 (89%) 0.65 0.62 5963 27
4 Split 6 8883 (89%) 0.32 0.64 5266 19

REDWOODCITY

4 Resample 5066 (51%) NA 0.60 7354 NA

1 Split 1 7566 (76%) 0.30 0.79 6362 59
1 Split 2 7768 (78%) 0.49 0.79 5819 33
1 Split 3 8037 (80%) 0.71 0.72 5940 17
1 Split 4 8193 (82%) 0.73 0.70 5953 11
1 Split 5 7986 (80%) 0.37 0.75 5299 7
1 Resample 2182 (22%) NA 0.75 6435 NA
2 Split 1 7569 (76%) 0.30 0.79 6338 60
2 Split 2 7740 (77%) 0.37 0.79 5782 45
2 Split 3 8105 (81%) 0.57 0.72 5877 25
2 Split 4 8258 (83%) 0.55 0.69 5962 21
2 Split 5 7977 (80%) 0.29 0.74 5367 12
2 Resample 2366 (24%) NA 0.74 6424 NA
3 Split 1 7577 (76%) 0.33 0.79 6319 55
3 Split 2 7732 (77%) 0.53 0.79 5806 29
3 Split 3 7982 (80%) 0.54 0.73 5802 26
3 Split 4 8097 (81%) 0.67 0.73 5952 14
3 Split 5 7721 (77%) 0.36 0.79 5202 8
3 Resample 1966 (20%) NA 0.78 6190 NA
4 Split 1 7587 (76%) 0.31 0.79 6382 58
4 Split 2 7798 (78%) 0.53 0.79 5827 30
4 Split 3 8026 (80%) 0.57 0.72 5872 25
4 Split 4 8264 (83%) 0.52 0.69 5927 22
4 Split 5 7488 (75%) 0.30 0.80 5402 12

RICHMOND

4 Resample 1173 (12%) NA 0.78 6041 NA

1 Split 1 9662 (97%) 0.13 0.38 6344 18
1 Split 2 9472 (95%) 0.20 0.43 6184 10
1 Split 3 8899 (89%) 0.11 0.58 5573 6
1 Resample 4678 (47%) NA 0.54 7628 NA
2 Split 1 9662 (97%) 0.12 0.37 6404 20
2 Split 2 9503 (95%) 0.19 0.42 6199 11
2 Split 3 9017 (90%) 0.11 0.56 5605 6
2 Resample 5000 (50%) NA 0.52 7770 NA
3 Split 1 9656 (97%) 0.12 0.38 6355 19
3 Split 2 9501 (95%) 0.18 0.42 6211 11
3 Split 3 8995 (90%) 0.11 0.57 5621 6
3 Resample 4993 (50%) NA 0.52 7753 NA
4 Split 1 9664 (97%) 0.14 0.37 6362 17
4 Split 2 9481 (95%) 0.20 0.43 6229 10
4 Split 3 8839 (88%) 0.11 0.59 5647 6

SANRAFAEL

4 Resample 4295 (43%) NA 0.54 7589 NA
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Table E-7: redist Plan Diagnostics (continued)

City Run Step Eff. samples (%) Acc. rate Log wgt. sd Max. unique Est. k

1 Split 1 9691 (97%) 0.46 0.34 6340 96
1 Split 2 9509 (95%) 0.69 0.40 6243 56
1 Split 3 9342 (93%) 0.91 0.49 6237 29
1 Split 4 9138 (91%) 0.92 0.55 6168 16
1 Split 5 9093 (91%) 0.54 0.57 5401 9
1 Resample 5997 (60%) NA 0.55 7649 NA
2 Split 1 9693 (97%) 0.41 0.34 6316 111
2 Split 2 9514 (95%) 0.69 0.40 6239 57
2 Split 3 9335 (93%) 0.68 0.49 6186 52
2 Split 4 9046 (90%) 0.82 0.56 6079 27
2 Split 5 8851 (89%) 0.34 0.61 5492 26
2 Resample 4546 (45%) NA 0.59 7398 NA
3 Split 1 9699 (97%) 0.45 0.34 6347 101
3 Split 2 9518 (95%) 0.72 0.40 6234 53
3 Split 3 9361 (94%) 0.84 0.49 6245 37
3 Split 4 9097 (91%) 0.84 0.56 6111 27
3 Split 5 8957 (90%) 0.46 0.59 5374 15
3 Resample 5431 (54%) NA 0.57 7463 NA
4 Split 1 9691 (97%) 0.49 0.34 6349 91
4 Split 2 9531 (95%) 0.78 0.39 6350 47
4 Split 3 9397 (94%) 0.74 0.48 6228 46
4 Split 4 9043 (90%) 0.70 0.57 6083 40
4 Split 5 8961 (90%) 0.34 0.60 5497 25

SANTABARBARA

4 Resample 5570 (56%) NA 0.58 7435 NA

1 Split 1 9709 (97%) 0.30 0.35 6248 44
1 Split 2 9610 (96%) 0.41 0.38 6296 26
1 Split 3 9498 (95%) 0.46 0.46 6249 19
1 Split 4 9208 (92%) 0.57 0.55 6141 10
1 Split 5 9084 (91%) 0.25 0.56 5475 8
1 Resample 5725 (57%) NA 0.55 7677 NA
2 Split 1 9709 (97%) 0.24 0.35 6298 54
2 Split 2 9580 (96%) 0.39 0.38 6203 28
2 Split 3 9486 (95%) 0.55 0.46 6239 15
2 Split 4 9244 (92%) 0.50 0.54 6161 13
2 Split 5 9152 (92%) 0.25 0.54 5518 8
2 Resample 5971 (60%) NA 0.53 7796 NA
3 Split 1 9708 (97%) 0.25 0.35 6264 53
3 Split 2 9603 (96%) 0.38 0.37 6266 28
3 Split 3 9465 (95%) 0.55 0.47 6210 15
3 Split 4 9184 (92%) 0.53 0.55 6156 12
3 Split 5 9142 (91%) 0.25 0.56 5561 8
3 Resample 6474 (65%) NA 0.55 7702 NA
4 Split 1 9712 (97%) 0.16 0.35 6316 84
4 Split 2 9589 (96%) 0.25 0.37 6215 44
4 Split 3 9477 (95%) 0.40 0.46 6230 23
4 Split 4 9260 (93%) 0.50 0.54 6121 13
4 Split 5 9148 (91%) 0.25 0.54 5526 8

SANTACLARA

4 Resample 5834 (58%) NA 0.53 7781 NA

1 Split 1 9705 (97%) 0.11 0.34 6344 19
1 Split 2 9329 (93%) 0.19 0.45 6185 11
1 Split 3 9193 (92%) 0.10 0.52 5707 7
1 Resample 6248 (62%) NA 0.52 7796 NA
2 Split 1 9696 (97%) 0.10 0.34 6253 21
2 Split 2 9415 (94%) 0.16 0.43 6282 13
2 Split 3 9200 (92%) 0.09 0.51 5758 8
2 Resample 6090 (61%) NA 0.51 7838 NA
3 Split 1 9706 (97%) 0.12 0.34 6324 18
3 Split 2 9416 (94%) 0.21 0.43 6226 10
3 Split 3 9192 (92%) 0.11 0.52 5767 6
3 Resample 6185 (62%) NA 0.51 7787 NA
4 Split 1 9705 (97%) 0.14 0.34 6269 15
4 Split 2 9314 (93%) 0.23 0.45 6223 9
4 Split 3 9141 (91%) 0.11 0.52 5729 6

SANTAMARIA

4 Resample 5546 (55%) NA 0.52 7771 NA
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Table E-7: redist Plan Diagnostics (continued)

City Run Step Eff. samples (%) Acc. rate Log wgt. sd Max. unique Est. k

1 Split 1 9668 (97%) 0.30 0.37 6355 52
1 Split 2 9503 (95%) 0.52 0.44 6286 27
1 Split 3 9391 (94%) 0.64 0.50 6231 18
1 Split 4 9193 (92%) 0.76 0.56 6205 10
1 Split 5 9063 (91%) 0.59 0.59 6063 14
1 Split 6 9010 (90%) 0.30 0.60 5363 8
1 Resample 5332 (53%) NA 0.58 7561 NA
2 Split 1 9671 (97%) 0.29 0.37 6310 55
2 Split 2 9500 (95%) 0.33 0.44 6205 45
2 Split 3 9404 (94%) 0.53 0.50 6254 24
2 Split 4 9215 (92%) 0.45 0.56 6127 27
2 Split 5 9055 (91%) 0.41 0.59 5994 24
2 Split 6 9006 (90%) 0.23 0.60 5473 13
2 Resample 5921 (59%) NA 0.59 7444 NA
3 Split 1 9677 (97%) 0.31 0.36 6309 51
3 Split 2 9480 (95%) 0.52 0.44 6272 27
3 Split 3 9379 (94%) 0.70 0.51 6196 15
3 Split 4 9106 (91%) 0.78 0.57 6249 9
3 Split 5 8902 (89%) 0.75 0.60 6068 6
3 Split 6 8921 (89%) 0.37 0.63 5260 4
3 Resample 5404 (54%) NA 0.61 7435 NA
4 Split 1 9673 (97%) 0.31 0.37 6305 52
4 Split 2 9489 (95%) 0.41 0.44 6273 36
4 Split 3 9290 (93%) 0.61 0.51 6190 19
4 Split 4 9194 (92%) 0.76 0.56 6206 10
4 Split 5 9005 (90%) 0.57 0.59 6070 15
4 Split 6 8912 (89%) 0.23 0.62 5422 13

SANTAROSA

4 Resample 4787 (48%) NA 0.60 7451 NA

1 Split 1 9636 (96%) 0.16 0.38 6265 16
1 Split 2 9368 (94%) 0.26 0.49 6178 9
1 Split 3 8983 (90%) 0.15 0.59 5670 5
1 Resample 5674 (57%) NA 0.58 7509 NA
2 Split 1 9631 (96%) 0.19 0.39 6337 13
2 Split 2 9387 (94%) 0.29 0.48 6199 8
2 Split 3 9081 (91%) 0.15 0.57 5671 5
2 Resample 5873 (59%) NA 0.55 7667 NA
3 Split 1 9637 (96%) 0.19 0.38 6320 13
3 Split 2 9411 (94%) 0.32 0.48 6165 7
3 Split 3 9003 (90%) 0.14 0.59 5670 5
3 Resample 5708 (57%) NA 0.58 7540 NA
4 Split 1 9632 (96%) 0.14 0.39 6314 18
4 Split 2 9379 (94%) 0.23 0.49 6144 10
4 Split 3 8898 (89%) 0.13 0.59 5693 6

SANTEE

4 Resample 4917 (49%) NA 0.58 7476 NA

1 Split 1 9757 (98%) 0.22 0.31 6330 40
1 Split 2 9406 (94%) 0.36 0.45 6241 21
1 Split 3 9028 (90%) 0.22 0.54 5752 11
1 Resample 4635 (46%) NA 0.53 7671 NA
2 Split 1 9754 (98%) 0.25 0.31 6276 34
2 Split 2 9357 (94%) 0.38 0.46 6252 20
2 Split 3 9184 (92%) 0.22 0.52 5749 11
2 Resample 6345 (63%) NA 0.52 7735 NA
3 Split 1 9751 (98%) 0.27 0.31 6325 32
3 Split 2 9406 (94%) 0.43 0.45 6258 17
3 Split 3 9083 (91%) 0.24 0.53 5864 10
3 Resample 5076 (51%) NA 0.52 7709 NA
4 Split 1 9758 (98%) 0.22 0.31 6340 40
4 Split 2 9386 (94%) 0.37 0.45 6242 21
4 Split 3 9109 (91%) 0.20 0.52 5814 12

SIMIVALLEY

4 Resample 5444 (54%) NA 0.52 7744 NA
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Table E-7: redist Plan Diagnostics (continued)

City Run Step Eff. samples (%) Acc. rate Log wgt. sd Max. unique Est. k

1 Split 1 9762 (98%) 0.31 0.32 6275 24
1 Split 2 9575 (96%) 0.45 0.38 6200 13
1 Split 3 9313 (93%) 0.22 0.47 5642 8
1 Resample 6448 (64%) NA 0.46 8056 NA
2 Split 1 9768 (98%) 0.31 0.31 6322 24
2 Split 2 9543 (95%) 0.45 0.39 6245 13
2 Split 3 9214 (92%) 0.24 0.49 5576 7
2 Resample 4720 (47%) NA 0.47 7961 NA
3 Split 1 9765 (98%) 0.30 0.31 6329 25
3 Split 2 9573 (96%) 0.42 0.39 6245 14
3 Split 3 9366 (94%) 0.22 0.46 5663 8
3 Resample 6837 (68%) NA 0.45 8127 NA
4 Split 1 9767 (98%) 0.27 0.31 6308 28
4 Split 2 9593 (96%) 0.39 0.38 6229 15
4 Split 3 9364 (94%) 0.20 0.47 5542 9

SOLANABEACH

4 Resample 6937 (69%) NA 0.46 8104 NA

1 Split 1 9810 (98%) 0.18 0.27 6300 19
1 Split 2 9670 (97%) 0.27 0.36 6246 11
1 Split 3 9435 (94%) 0.27 0.46 6036 9
1 Split 4 9218 (92%) 0.13 0.52 5327 6
1 Resample 6560 (66%) NA 0.51 7831 NA
2 Split 1 9812 (98%) 0.19 0.27 6262 18
2 Split 2 9681 (97%) 0.29 0.35 6288 10
2 Split 3 9440 (94%) 0.38 0.45 6121 6
2 Split 4 9131 (91%) 0.17 0.52 5372 4
2 Resample 5562 (56%) NA 0.51 7760 NA
3 Split 1 9809 (98%) 0.14 0.28 6322 24
3 Split 2 9662 (97%) 0.23 0.36 6287 13
3 Split 3 9461 (95%) 0.30 0.45 6069 8
3 Split 4 9275 (93%) 0.14 0.50 5319 5
3 Resample 6859 (69%) NA 0.50 7890 NA
4 Split 1 9814 (98%) 0.17 0.27 6332 19
4 Split 2 9674 (97%) 0.26 0.36 6223 11
4 Split 3 9423 (94%) 0.37 0.46 6122 6
4 Split 4 9245 (92%) 0.11 0.50 5319 7

SOUTHPASADENA

4 Resample 6470 (65%) NA 0.50 7870 NA

1 Split 1 8532 (85%) 0.28 0.90 6297 42
1 Split 2 8849 (88%) 0.34 0.67 6173 23
1 Split 3 8612 (86%) 0.35 0.71 5959 17
1 Split 4 8076 (81%) 0.19 0.85 5404 10
1 Resample 3119 (31%) NA 0.79 6477 NA
2 Split 1 8543 (85%) 0.30 0.90 6348 39
2 Split 2 8834 (88%) 0.34 0.67 6155 23
2 Split 3 8647 (86%) 0.43 0.71 5938 13
2 Split 4 8414 (84%) 0.18 0.81 5350 11
2 Resample 4399 (44%) NA 0.76 6768 NA
3 Split 1 8543 (85%) 0.25 0.90 6284 47
3 Split 2 8852 (89%) 0.31 0.67 6133 25
3 Split 3 8698 (87%) 0.42 0.69 5973 14
3 Split 4 8208 (82%) 0.19 0.83 5370 10
3 Resample 3512 (35%) NA 0.78 6600 NA
4 Split 1 8520 (85%) 0.31 0.91 6354 38
4 Split 2 8866 (89%) 0.39 0.67 6117 20
4 Split 3 8729 (87%) 0.49 0.69 5939 11
4 Split 4 8323 (83%) 0.13 0.81 5371 16

SOUTHSANFRANCISCO

4 Resample 3731 (37%) NA 0.75 6712 NA

1 Split 1 8750 (87%) 0.19 0.70 6317 15
1 Split 2 9163 (92%) 0.23 0.50 6075 9
1 Split 3 9083 (91%) 0.09 0.55 5173 6
1 Resample 6375 (64%) NA 0.56 7588 NA
2 Split 1 8759 (88%) 0.13 0.70 6377 21
2 Split 2 9146 (91%) 0.17 0.51 6019 12
2 Split 3 9075 (91%) 0.08 0.56 5209 7
2 Resample 6403 (64%) NA 0.57 7549 NA
3 Split 1 8740 (87%) 0.16 0.70 6383 17
3 Split 2 9141 (91%) 0.21 0.51 6117 10
3 Split 3 9002 (90%) 0.09 0.57 5170 6
3 Resample 6081 (61%) NA 0.58 7462 NA
4 Split 1 8722 (87%) 0.20 0.71 6335 14
4 Split 2 9154 (92%) 0.25 0.51 6043 8
4 Split 3 9069 (91%) 0.08 0.55 5249 7

STANTON

4 Resample 6327 (63%) NA 0.57 7573 NA
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Table E-7: redist Plan Diagnostics (continued)

City Run Step Eff. samples (%) Acc. rate Log wgt. sd Max. unique Est. k

1 Split 1 9773 (98%) 0.29 0.30 6316 42
1 Split 2 9584 (96%) 0.47 0.42 6300 22
1 Split 3 9365 (94%) 0.49 0.50 6260 18
1 Split 4 9068 (91%) 0.60 0.57 6220 10
1 Split 5 9014 (90%) 0.26 0.58 5428 8
1 Resample 5781 (58%) NA 0.57 7552 NA
2 Split 1 9764 (98%) 0.28 0.31 6343 44
2 Split 2 9541 (95%) 0.45 0.42 6273 23
2 Split 3 9353 (94%) 0.60 0.52 6212 13
2 Split 4 9189 (92%) 0.64 0.57 6109 9
2 Split 5 9039 (90%) 0.21 0.58 5564 11
2 Resample 5513 (55%) NA 0.56 7626 NA
3 Split 1 9773 (98%) 0.28 0.30 6346 43
3 Split 2 9558 (96%) 0.45 0.43 6258 23
3 Split 3 9275 (93%) 0.60 0.52 6256 13
3 Split 4 9132 (91%) 0.61 0.57 6118 10
3 Split 5 8972 (90%) 0.30 0.57 5490 6
3 Resample 4335 (43%) NA 0.56 7568 NA
4 Split 1 9769 (98%) 0.29 0.31 6328 42
4 Split 2 9556 (96%) 0.46 0.42 6215 22
4 Split 3 9340 (93%) 0.63 0.52 6264 12
4 Split 4 9146 (91%) 0.49 0.56 6124 15
4 Split 5 9006 (90%) 0.18 0.59 5585 14

SUNNYVALE

4 Resample 5409 (54%) NA 0.57 7545 NA

1 Split 1 8481 (85%) 1.00 0.87 6293 193
1 Split 2 8248 (82%) 0.98 0.90 5933 161
1 Split 3 8502 (85%) 0.99 0.78 5943 81
1 Split 4 6838 (68%) 0.02 1.22 2259 41
1 Resample 3714 (37%) NA 1.28 4901 NA
2 Split 1 8420 (84%) 1.00 0.87 6299 202
2 Split 2 8254 (83%) 0.98 0.89 5933 160
2 Split 3 8526 (85%) 0.99 0.78 5937 81
2 Split 4 6924 (69%) 0.02 1.21 2235 41
2 Resample 3878 (39%) NA 1.29 4977 NA
3 Split 1 8441 (84%) 0.99 0.87 6306 202
3 Split 2 8265 (83%) 0.98 0.87 5889 140
3 Split 3 8516 (85%) 0.98 0.80 5848 100
3 Split 4 6602 (66%) 0.01 1.23 2094 87
3 Resample 3120 (31%) NA 1.28 4721 NA
4 Split 1 8416 (84%) 1.00 0.87 6310 199
4 Split 2 8174 (82%) 0.98 0.90 5896 153
4 Split 3 8411 (84%) 0.98 0.85 5832 128
4 Split 4 6866 (69%) 0.01 1.18 1784 69

TEHACHAPI

4 Resample 3709 (37%) NA 1.24 4891 NA

1 Split 1 9729 (97%) 0.27 0.32 6319 28
1 Split 2 9614 (96%) 0.47 0.39 6277 15
1 Split 3 9407 (94%) 0.61 0.48 6203 9
1 Split 4 9270 (93%) 0.28 0.54 5630 6
1 Resample 6804 (68%) NA 0.50 7891 NA
2 Split 1 9727 (97%) 0.21 0.32 6340 36
2 Split 2 9578 (96%) 0.38 0.40 6193 19
2 Split 3 9381 (94%) 0.53 0.48 6210 11
2 Split 4 9226 (92%) 0.20 0.55 5625 10
2 Resample 6231 (62%) NA 0.50 7866 NA
3 Split 1 9730 (97%) 0.19 0.32 6321 40
3 Split 2 9530 (95%) 0.35 0.40 6254 21
3 Split 3 9436 (94%) 0.54 0.48 6161 11
3 Split 4 9292 (93%) 0.26 0.53 5569 7
3 Resample 6569 (66%) NA 0.49 7914 NA
4 Split 1 9731 (97%) 0.26 0.32 6274 29
4 Split 2 9600 (96%) 0.43 0.39 6224 16
4 Split 3 9415 (94%) 0.57 0.48 6194 10
4 Split 4 9338 (93%) 0.28 0.52 5583 6

TEMECULA

4 Resample 6656 (67%) NA 0.48 8002 NA
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Table E-7: redist Plan Diagnostics (continued)

City Run Step Eff. samples (%) Acc. rate Log wgt. sd Max. unique Est. k

1 Split 1 9451 (95%) 0.21 0.46 6377 39
1 Split 2 9431 (94%) 0.32 0.44 6242 21
1 Split 3 9361 (94%) 0.49 0.49 6218 11
1 Split 4 9147 (91%) 0.37 0.58 6080 13
1 Split 5 9095 (91%) 0.18 0.60 5557 8
1 Resample 6450 (65%) NA 0.58 7567 NA
2 Split 1 9431 (94%) 0.25 0.47 6325 33
2 Split 2 9419 (94%) 0.37 0.44 6173 18
2 Split 3 9371 (94%) 0.51 0.50 6181 10
2 Split 4 9222 (92%) 0.57 0.57 6140 6
2 Split 5 9091 (91%) 0.14 0.59 5555 11
2 Resample 6223 (62%) NA 0.57 7593 NA
3 Split 1 9440 (94%) 0.19 0.47 6285 44
3 Split 2 9337 (93%) 0.30 0.45 6211 23
3 Split 3 9317 (93%) 0.42 0.51 6190 14
3 Split 4 9195 (92%) 0.50 0.57 6076 8
3 Split 5 9101 (91%) 0.24 0.59 5532 5
3 Resample 6193 (62%) NA 0.57 7631 NA
4 Split 1 9439 (94%) 0.25 0.47 6284 34
4 Split 2 9416 (94%) 0.38 0.44 6221 18
4 Split 3 9362 (94%) 0.51 0.50 6153 10
4 Split 4 9216 (92%) 0.56 0.56 6136 6
4 Split 5 9003 (90%) 0.26 0.60 5442 4

TORRANCE

4 Resample 5460 (55%) NA 0.58 7531 NA

1 Split 1 9749 (97%) 0.21 0.31 6315 29
1 Split 2 9545 (95%) 0.32 0.41 6208 16
1 Split 3 9108 (91%) 0.18 0.51 5881 9
1 Resample 4846 (48%) NA 0.50 7815 NA
2 Split 1 9757 (98%) 0.21 0.30 6333 29
2 Split 2 9530 (95%) 0.32 0.42 6290 16
2 Split 3 9233 (92%) 0.18 0.50 5827 9
2 Resample 6157 (62%) NA 0.49 7900 NA
3 Split 1 9761 (98%) 0.18 0.30 6294 33
3 Split 2 9547 (95%) 0.26 0.41 6288 20
3 Split 3 9170 (92%) 0.15 0.51 5878 11
3 Resample 5610 (56%) NA 0.50 7869 NA
4 Split 1 9764 (98%) 0.17 0.30 6294 37
4 Split 2 9583 (96%) 0.26 0.40 6271 20
4 Split 3 9277 (93%) 0.15 0.49 5855 11

TURLOCK

4 Resample 6660 (67%) NA 0.48 7962 NA

1 Split 1 9312 (93%) 0.32 0.52 6248 59
1 Split 2 7901 (79%) 0.56 0.77 5942 31
1 Split 3 8355 (84%) 0.79 0.75 5840 21
1 Split 4 8236 (82%) 0.28 0.80 5805 23
1 Resample 4307 (43%) NA 0.81 6535 NA
2 Split 1 9282 (93%) 0.38 0.53 6366 49
2 Split 2 7960 (80%) 0.64 0.76 5845 26
2 Split 3 8407 (84%) 0.83 0.74 5882 18
2 Split 4 8272 (83%) 0.42 0.79 5748 14
2 Resample 4316 (43%) NA 0.80 6572 NA
3 Split 1 9289 (93%) 0.35 0.53 6283 53
3 Split 2 7909 (79%) 0.57 0.77 5825 31
3 Split 3 8401 (84%) 0.76 0.74 5842 22
3 Split 4 8255 (83%) 0.46 0.80 5760 12
3 Resample 4061 (41%) NA 0.80 6588 NA
4 Split 1 9303 (93%) 0.35 0.53 6374 54
4 Split 2 7918 (79%) 0.56 0.77 5923 31
4 Split 3 8335 (83%) 0.61 0.75 5787 31
4 Split 4 8317 (83%) 0.36 0.79 5737 17

TWENTYNINEPALMS

4 Resample 4465 (45%) NA 0.79 6596 NA
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Table E-7: redist Plan Diagnostics (continued)

City Run Step Eff. samples (%) Acc. rate Log wgt. sd Max. unique Est. k

1 Split 1 9591 (96%) 0.16 0.39 6319 21
1 Split 2 9213 (92%) 0.32 0.56 6201 12
1 Split 3 9306 (93%) 0.17 0.50 5918 7
1 Resample 6998 (70%) NA 0.52 7923 NA
2 Split 1 9596 (96%) 0.21 0.39 6331 16
2 Split 2 9296 (93%) 0.41 0.55 6218 9
2 Split 3 9334 (93%) 0.19 0.50 5794 6
2 Resample 7236 (72%) NA 0.52 7913 NA
3 Split 1 9591 (96%) 0.17 0.39 6304 20
3 Split 2 9259 (93%) 0.34 0.56 6187 11
3 Split 3 9362 (94%) 0.19 0.49 5864 6
3 Resample 7486 (75%) NA 0.51 8001 NA
4 Split 1 9592 (96%) 0.17 0.39 6311 19
4 Split 2 9218 (92%) 0.34 0.56 6140 11
4 Split 3 9299 (93%) 0.17 0.50 5887 7

UNIONCITY

4 Resample 6888 (69%) NA 0.52 7912 NA

1 Split 1 9649 (96%) 0.18 0.37 6406 22
1 Split 2 9350 (94%) 0.30 0.49 6243 12
1 Split 3 9028 (90%) 0.15 0.58 5763 8
1 Resample 6058 (61%) NA 0.58 7457 NA
2 Split 1 9653 (97%) 0.15 0.37 6346 27
2 Split 2 9330 (93%) 0.24 0.50 6266 15
2 Split 3 8956 (90%) 0.14 0.59 5744 9
2 Resample 5581 (56%) NA 0.59 7388 NA
3 Split 1 9647 (96%) 0.15 0.37 6320 27
3 Split 2 9351 (94%) 0.24 0.49 6177 15
3 Split 3 8931 (89%) 0.15 0.59 5782 8
3 Resample 5373 (54%) NA 0.59 7384 NA
4 Split 1 9654 (97%) 0.20 0.37 6291 20
4 Split 2 9380 (94%) 0.33 0.48 6236 11
4 Split 3 9004 (90%) 0.19 0.58 5737 6

UPLAND

4 Resample 5986 (60%) NA 0.58 7456 NA

1 Split 1 9731 (97%) 0.14 0.33 6338 20
1 Split 2 9546 (95%) 0.21 0.41 6194 11
1 Split 3 9358 (94%) 0.28 0.50 6156 7
1 Split 4 8971 (90%) 0.29 0.58 6035 5
1 Split 5 8980 (90%) 0.13 0.60 5360 3
1 Resample 5735 (57%) NA 0.59 7497 NA
2 Split 1 9741 (97%) 0.10 0.33 6257 28
2 Split 2 9549 (95%) 0.16 0.41 6211 15
2 Split 3 9273 (93%) 0.23 0.50 6187 9
2 Split 4 8956 (90%) 0.29 0.59 6026 5
2 Split 5 8996 (90%) 0.06 0.59 5438 10
2 Resample 5949 (59%) NA 0.58 7469 NA
3 Split 1 9734 (97%) 0.14 0.33 6307 20
3 Split 2 9506 (95%) 0.21 0.42 6201 11
3 Split 3 9205 (92%) 0.31 0.52 6151 6
3 Split 4 9005 (90%) 0.33 0.59 6062 4
3 Split 5 8877 (89%) 0.06 0.62 5435 9
3 Resample 5067 (51%) NA 0.60 7388 NA
4 Split 1 9742 (97%) 0.16 0.33 6334 17
4 Split 2 9550 (96%) 0.23 0.41 6251 10
4 Split 3 9345 (93%) 0.31 0.50 6164 6
4 Split 4 8979 (90%) 0.26 0.59 6056 6
4 Split 5 9011 (90%) 0.12 0.60 5363 4

VALLEJO

4 Resample 5954 (60%) NA 0.59 7462 NA
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Table E-7: redist Plan Diagnostics (continued)

City Run Step Eff. samples (%) Acc. rate Log wgt. sd Max. unique Est. k

1 Split 1 9826 (98%) 0.28 0.27 6341 63
1 Split 2 9672 (97%) 0.46 0.37 6251 33
1 Split 3 9429 (94%) 0.39 0.45 6188 37
1 Split 4 9180 (92%) 0.22 0.51 5684 20
1 Resample 6080 (61%) NA 0.51 7784 NA
2 Split 1 9826 (98%) 0.27 0.26 6328 64
2 Split 2 9684 (97%) 0.41 0.36 6296 37
2 Split 3 9395 (94%) 0.60 0.46 6186 20
2 Split 4 9220 (92%) 0.31 0.50 5655 12
2 Resample 5794 (58%) NA 0.49 7859 NA
3 Split 1 9821 (98%) 0.30 0.27 6318 58
3 Split 2 9646 (96%) 0.44 0.37 6263 35
3 Split 3 9416 (94%) 0.62 0.46 6226 19
3 Split 4 9183 (92%) 0.19 0.50 5754 23
3 Resample 5439 (54%) NA 0.50 7841 NA
4 Split 1 9820 (98%) 0.25 0.27 6285 71
4 Split 2 9675 (97%) 0.42 0.37 6270 37
4 Split 3 9332 (93%) 0.60 0.47 6242 20
4 Split 4 9221 (92%) 0.28 0.50 5679 14

VISALIA

4 Resample 6219 (62%) NA 0.50 7859 NA

1 Split 1 9745 (97%) 0.22 0.33 6394 30
1 Split 2 9444 (94%) 0.37 0.45 6166 16
1 Split 3 9097 (91%) 0.18 0.55 5786 11
1 Resample 5489 (55%) NA 0.52 7722 NA
2 Split 1 9744 (97%) 0.19 0.32 6301 35
2 Split 2 9431 (94%) 0.32 0.45 6250 19
2 Split 3 9255 (93%) 0.18 0.52 5733 11
2 Resample 6665 (67%) NA 0.50 7868 NA
3 Split 1 9744 (97%) 0.23 0.33 6326 29
3 Split 2 9434 (94%) 0.37 0.45 6298 16
3 Split 3 9239 (92%) 0.21 0.52 5785 9
3 Resample 6180 (62%) NA 0.50 7865 NA
4 Split 1 9744 (97%) 0.20 0.32 6333 33
4 Split 2 9428 (94%) 0.28 0.45 6296 22
4 Split 3 9246 (92%) 0.17 0.52 5795 12

VISTA

4 Resample 6421 (64%) NA 0.50 7860 NA

1 Split 1 8232 (82%) 0.43 0.75 6312 196
1 Split 2 7947 (79%) 0.80 0.78 5856 100
1 Split 3 7759 (78%) 0.79 0.76 5762 51
1 Split 4 8165 (82%) 0.29 0.74 5145 44
1 Resample 3373 (34%) NA 0.74 6529 NA
2 Split 1 8222 (82%) 0.44 0.74 6320 196
2 Split 2 8006 (80%) 0.81 0.77 5955 99
2 Split 3 8044 (80%) 0.69 0.75 5511 73
2 Split 4 8300 (83%) 0.17 0.71 5106 68
2 Resample 3877 (39%) NA 0.72 6687 NA
3 Split 1 8198 (82%) 0.44 0.75 6330 196
3 Split 2 8006 (80%) 0.81 0.77 5898 99
3 Split 3 8091 (81%) 0.66 0.75 5425 82
3 Split 4 8279 (83%) 0.23 0.73 5104 49
3 Resample 3805 (38%) NA 0.73 6623 NA
4 Split 1 8215 (82%) 0.44 0.75 6349 196
4 Split 2 7999 (80%) 0.81 0.77 5924 99
4 Split 3 8005 (80%) 0.73 0.74 5546 67
4 Split 4 8358 (84%) 0.26 0.72 5044 44

WASCO

4 Resample 4080 (41%) NA 0.72 6715 NA
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Table E-7: redist Plan Diagnostics (continued)

City Run Step Eff. samples (%) Acc. rate Log wgt. sd Max. unique Est. k

1 Split 1 8864 (89%) 0.25 0.65 6381 34
1 Split 2 9243 (92%) 0.43 0.48 5995 18
1 Split 3 9246 (92%) 0.40 0.54 5998 17
1 Split 4 8890 (89%) 0.22 0.63 5622 10
1 Resample 5302 (53%) NA 0.60 7391 NA
2 Split 1 8879 (89%) 0.25 0.64 6350 34
2 Split 2 9232 (92%) 0.37 0.48 5963 21
2 Split 3 9280 (93%) 0.53 0.54 6076 12
2 Split 4 8978 (90%) 0.28 0.62 5623 7
2 Resample 5535 (55%) NA 0.59 7477 NA
3 Split 1 8866 (89%) 0.27 0.64 6315 31
3 Split 2 9228 (92%) 0.42 0.48 5948 18
3 Split 3 9293 (93%) 0.36 0.53 6052 19
3 Split 4 9001 (90%) 0.19 0.61 5616 12
3 Resample 5541 (55%) NA 0.58 7537 NA
4 Split 1 8861 (89%) 0.31 0.64 6312 27
4 Split 2 9228 (92%) 0.42 0.48 5968 18
4 Split 3 9268 (93%) 0.47 0.54 6055 14
4 Split 4 9023 (90%) 0.25 0.62 5683 8

WESTCOVINA

4 Resample 6080 (61%) NA 0.59 7489 NA

1 Split 1 9612 (96%) 0.30 0.40 6270 55
1 Split 2 9353 (94%) 0.49 0.43 6314 29
1 Split 3 9128 (91%) 0.28 0.55 5772 16
1 Resample 6065 (61%) NA 0.53 7699 NA
2 Split 1 9616 (96%) 0.33 0.40 6313 51
2 Split 2 9366 (94%) 0.53 0.43 6244 26
2 Split 3 9070 (91%) 0.25 0.55 5873 19
2 Resample 5108 (51%) NA 0.53 7675 NA
3 Split 1 9627 (96%) 0.38 0.39 6325 44
3 Split 2 9337 (93%) 0.49 0.43 6219 28
3 Split 3 9046 (90%) 0.14 0.55 5892 33
3 Resample 5067 (51%) NA 0.54 7597 NA
4 Split 1 9618 (96%) 0.40 0.40 6350 42
4 Split 2 9316 (93%) 0.59 0.43 6231 22
4 Split 3 9066 (91%) 0.34 0.56 5831 12

WHITTIER

4 Resample 5654 (57%) NA 0.54 7649 NA

1 Split 1 9813 (98%) 0.25 0.27 6336 18
1 Split 2 9637 (96%) 0.37 0.41 6308 10
1 Split 3 9365 (94%) 0.40 0.49 6159 7
1 Split 4 9114 (91%) 0.17 0.55 5248 5
1 Resample 6008 (60%) NA 0.54 7689 NA
2 Split 1 9811 (98%) 0.23 0.28 6331 20
2 Split 2 9630 (96%) 0.34 0.42 6242 11
2 Split 3 9322 (93%) 0.40 0.51 6062 7
2 Split 4 8973 (90%) 0.18 0.58 5147 5
2 Resample 5471 (55%) NA 0.58 7494 NA
3 Split 1 9814 (98%) 0.18 0.27 6291 25
3 Split 2 9631 (96%) 0.27 0.42 6297 14
3 Split 3 9359 (94%) 0.36 0.50 6158 8
3 Split 4 9055 (91%) 0.18 0.57 5235 5
3 Resample 5902 (59%) NA 0.56 7607 NA
4 Split 1 9811 (98%) 0.27 0.28 6392 17
4 Split 2 9613 (96%) 0.37 0.42 6222 10
4 Split 3 9373 (94%) 0.44 0.49 6139 6
4 Split 4 9082 (91%) 0.18 0.55 5249 5

WILDOMAR

4 Resample 5897 (59%) NA 0.55 7662 NA
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Table E-7: redist Plan Diagnostics (continued)

City Run Step Eff. samples (%) Acc. rate Log wgt. sd Max. unique Est. k

1 Split 1 9553 (96%) 0.30 0.40 6340 60
1 Split 2 9342 (93%) 0.53 0.46 6158 31
1 Split 3 9181 (92%) 0.48 0.53 6092 30
1 Split 4 8880 (89%) 0.27 0.62 5492 16
1 Resample 5186 (52%) NA 0.60 7396 NA
2 Split 1 9554 (96%) 0.30 0.40 6379 59
2 Split 2 9324 (93%) 0.53 0.45 6152 31
2 Split 3 9105 (91%) 0.70 0.52 6075 17
2 Split 4 8823 (88%) 0.24 0.61 5579 18
2 Resample 4433 (44%) NA 0.59 7375 NA
3 Split 1 9554 (96%) 0.37 0.40 6350 48
3 Split 2 9369 (94%) 0.60 0.44 6231 26
3 Split 3 9206 (92%) 0.76 0.52 6136 14
3 Split 4 8968 (90%) 0.32 0.59 5587 12
3 Resample 5362 (54%) NA 0.58 7506 NA
4 Split 1 9560 (96%) 0.37 0.40 6343 48
4 Split 2 9338 (93%) 0.62 0.45 6134 25
4 Split 3 9223 (92%) 0.76 0.51 6146 14
4 Split 4 8895 (89%) 0.37 0.59 5524 10

WOODLAND

4 Resample 4770 (48%) NA 0.58 7396 NA

1 Split 1 9856 (99%) 0.22 0.24 6363 14
1 Split 2 9629 (96%) 0.35 0.38 6289 8
1 Split 3 9348 (93%) 0.28 0.47 6195 9
1 Split 4 9127 (91%) 0.10 0.53 5709 8
1 Resample 5957 (60%) NA 0.53 7702 NA
2 Split 1 9853 (99%) 0.15 0.24 6329 21
2 Split 2 9639 (96%) 0.24 0.38 6311 12
2 Split 3 9347 (93%) 0.35 0.47 6229 7
2 Split 4 9133 (91%) 0.18 0.54 5557 4
2 Resample 6143 (61%) NA 0.53 7664 NA
3 Split 1 9855 (99%) 0.17 0.24 6380 19
3 Split 2 9643 (96%) 0.26 0.38 6323 11
3 Split 3 9322 (93%) 0.34 0.48 6171 7
3 Split 4 9234 (92%) 0.15 0.51 5661 5
3 Resample 6495 (65%) NA 0.51 7841 NA
4 Split 1 9854 (99%) 0.15 0.24 6330 20
4 Split 2 9636 (96%) 0.26 0.38 6270 11
4 Split 3 9327 (93%) 0.34 0.48 6230 7
4 Split 4 9128 (91%) 0.15 0.53 5612 5

YUCAIPA

4 Resample 5969 (60%) NA 0.53 7681 NA

1 Split 1 9813 (98%) 0.17 0.27 6313 19
1 Split 2 9665 (97%) 0.26 0.36 6250 11
1 Split 3 9402 (94%) 0.36 0.46 6252 7
1 Split 4 9212 (92%) 0.15 0.52 5488 5
1 Resample 6407 (64%) NA 0.51 7839 NA
2 Split 1 9821 (98%) 0.15 0.26 6253 21
2 Split 2 9657 (97%) 0.24 0.37 6250 12
2 Split 3 9413 (94%) 0.35 0.46 6189 7
2 Split 4 9032 (90%) 0.15 0.54 5412 5
2 Resample 4942 (49%) NA 0.53 7607 NA
3 Split 1 9817 (98%) 0.20 0.26 6333 16
3 Split 2 9666 (97%) 0.31 0.37 6244 9
3 Split 3 9414 (94%) 0.29 0.46 6129 9
3 Split 4 9029 (90%) 0.07 0.54 5467 11
3 Resample 4902 (49%) NA 0.53 7651 NA
4 Split 1 9819 (98%) 0.12 0.26 6332 28
4 Split 2 9665 (97%) 0.20 0.37 6233 15
4 Split 3 9398 (94%) 0.29 0.46 6193 9
4 Split 4 9157 (92%) 0.13 0.53 5411 6

YUCCAVALLEY

4 Resample 6095 (61%) NA 0.52 7776 NA

A-47


	Data Construction
	Shapefile Construction
	Incumbent Identification
	City-Level Variables

	Data Summary
	Cities within Study's Sample
	Incumbent Candidates

	District Simulations
	Redistricting Algorithm
	Parameter Selection
	Plan Measurements

	Additional Tables and Figures
	Simulation Diagnostics

