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Few questions in politics are more enduring than how to define the size and shape of political

communities. In empirical political science, scholars have debated these features in terms of the

administrative costs of running political systems (e.g., Blom-Hansen, Houlberg and Serritzlew

2014; Ostrom 2009) as well as their implications for democratic representation, participation, and

fairness (Almond and Verba 1963; Blom-Hansen et al. 2016; Caughey, Tausanovitch and Warshaw

2017; Dahl 2008; Denters et al. 2014; Gerring and Veenendaal 2020; Lassen and Serritzlew 2011;

Warshaw 2019). This research highlights how the drawing of jurisdictional boundaries influences

citizen representation, political participation, and political efficacy, and shapes how resources are

managed, with significant consequences for democratic functioning and economic performance.

However, much less attention has been paid to how the size and shape of jurisdictions affect policy

outcomes.

This article addresses that question by examining how jurisdictional size and shape interact

to influence policy outcomes, using the siting of wind turbines as a critical case. Wind turbines

are central to the transition away from fossil fuels, making their timely deployment a global pri-

ority (Quaschning 2019). In many countries, the authority to approve turbine locations rests with

local governments (see Appendix A), placing these decisions squarely within the realm of local

jurisdictional politics. Beyond their importance for decarbonization, wind turbines also exemplify

a broader class of policy challenges known as locally unwanted land uses (LULUs). Because

turbines generate both local costs and broader societal benefits, their siting decisions reveal how

jurisdictional boundaries can shape distributive outcomes. In particular, the share of voters directly

affected by a turbine will depend on the overall size of a jurisdiction but also on its shape, which

determines the spatial distribution of voters relative to project locations. In turn, these boundaries

structure whose preferences local politicians prioritize, and whose concerns can be more easily

ignored.

To formalize these ideas, we develop a theoretical model of renewable energy infrastructure

siting in decentralized political systems. The model captures how local politicians weigh the eco-

nomic and political benefits of wind energy projects (Urpelainen and Zhang 2022) against the risks
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of local opposition (Stokes 2016; Stokes et al. 2023). A key insight is that the size and shape of

jurisdictions determine how voters are distributed across space, which in turn affects local politi-

cians’ incentives over where to site turbines. As a result, turbine placement decisions reflect not

only economic and technical considerations, but also the political geography of municipalities—in

particular, whose preferences matter most within and across jurisdictional lines. Jurisdictions with

identical population sizes but different shapes may expose different shares of their electorate to

a turbine’s impacts, creating distinct political pressures. Furthermore, the drawing of jurisdic-

tional boundaries creates border areas where the preferences of those just inside the line are given

greater weight than those living just across it, even if both groups experience the same negative

externalities. This highlights an important yet understudied democratic consequence of how local

jurisdictions are structured.

We test our model empirically by analyzing the placement of all wind turbines constructed in

Denmark. Over recent decades, Denmark has built thousands of turbines, creating a rich dataset

for evaluating our model’s predictions. Specifically, we divide the country into 1x1 km grid cells

and overlay these with municipal boundaries to link turbine siting decisions to local political juris-

dictions. Using our theoretical model and detailed administrative data, we calculate an “approval

score” that represents the proportion of voters likely to approve a given turbine site, and then ex-

amine how this aligns with actual siting decisions. Our findings support the model’s predictions:

the spatial distribution of voters within jurisdictions appears to be a key factor shaping turbine

placement.

A central inferential challenge, however, is that the observed relationship may be confounded

by the underlying distribution of people and infrastructure, which could jointly determine both

jurisdictional borders and turbine siting. To address these concerns, we exploit a 2007 municipal

boundary reform that redrew most local jurisdictional borders. This reform fundamentally changed

the size and shape of municipalities, altering the composition of local electorates while leaving the

physical geography of turbine sites unchanged. We leverage this reform to calculate changes in

the approval score for each grid cell before and after the boundary shift. We then examine whether
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locations experiencing an increase in approval score after the reform were more likely to receive

turbines in the post-reform period. These reform-induced changes do not predict turbine siting

before the reform, suggesting that the reform was plausibly exogenous to other factors driving

turbine development. Further supporting this interpretation, controlling for topographic factors

known to influence turbine placement does not substantially affect the estimated effects.

The study makes three contributions to debates about jurisdictional structure and policy-making.

First, it moves beyond questions of representation and efficiency to focus on how jurisdictional

boundaries shape policy outcomes. Second, it shows how the size and shape of jurisdictions jointly

interact to structure these outcomes, highlighting the political geography of who is affected by de-

cisions. Third, by applying these ideas to the siting of renewable energy infrastructure—a critical

component of the transition away from fossil fuels (Bolet, Green and Gonzalez-Eguino 2024; Ha-

zlett and Mildenberger 2020; Hughes and Lipscy 2013; Stokes 2020)—the study sheds new light

on the political challenges of achieving decarbonization, where local governments must balance

national goals with local resistance.

Jurisdiction Lines and the Siting of Renewable Energy Projects

Debates about the appropriate size and shape of jurisdictions are central to political science (Treis-

man 2007). This literature has examined questions of scale and optimal jurisdiction size (Blom-

Hansen, Houlberg and Serritzlew 2014; Gerring and Veenendaal 2020; Lassen and Serritzlew

2011), the benefits of competition between local governments (Tiebout 1956), the challenges of

horizontal coordination (Ostrom 2009), fiscal governance (Oates 1972), and other institutional

trade-offs (Treisman 2007). However, it has paid far less attention to how the drawing of jurisdic-

tional boundaries affects the placement of facilities with broad social benefits but localized costs,

such as renewable energy projects.

The drawing of jurisdictional boundaries is a central element of political architecture. Bound-

aries define which residents belong to a given community and which do not, shaping the allocation

of political accountability and influence. As a result, people who live close to one another may fall
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under different local governments, separated by these borders. When those borders divide com-

munities, residents just outside a boundary may bear the costs of decisions taken by a neighboring

local government—decisions they cannot politically contest. These patterns can concentrate politi-

cal costs or benefits within certain areas depending on how boundaries are drawn. A large literature

on pollution exporting has shown, for instance, that undesirable facilities such as coal-fired power

plants or waste sites are sometimes placed near jurisdictional borders to shift negative externalities

onto neighboring populations who cannot hold decision makers accountable (Konisky and Woods

2010; Morehouse and Rubin 2021). Yet we know little about how these same dynamics might

unfold for beneficial but locally costly facilities.

This question is particularly pressing for renewable energy projects. Renewable technologies

like solar parks and wind turbines are essential to achieving climate goals, but their siting imposes

highly localized costs on nearby residents. For example, turbines can lower house prices (Andersen

and Hener 2023) and generate intense local opposition even in regions with strong public support

for renewable energy (Stokes 2016; Stokes et al. 2023). Such opposition reflects broader resistance

to so-called locally unwanted land uses (LULUs), where communities reject projects with local

costs despite broader societal benefits (de Benedictis-Kessner and Hankinson 2019; Devine-Wright

2009; Furuseth 1990; Marble and Nall 2021; Trounstine 2009). Yet studies of LULUs and wind

energy have largely neglected how the size and shape of jurisdictional boundaries might structure

these political incentives. At the same time, wind projects may bring local benefits, including

tax revenues and job creation (Urpelainen and Zhang 2022), and can be politically advantageous

if climate policy is popular among voters. What remains unclear is how local politicians weigh

these competing pressures, and whether the political architecture of their jurisdictions—its size

and spatial configuration—conditions these siting decisions.

In the theoretical model presented below, we argue that the size and shape of jurisdictions

affect where key infrastructure, such as wind turbines, is located, since electorally accountable

representatives seek to minimize the share of the associated costs borne by their own constituents.

In brief, we expect that local politicians will attempt to site turbines in ways that minimize the
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political costs to their own constituents, taking advantage of how jurisdictional boundaries separate

those they represent from nearby residents across the border.

Although our argument is broadly applicable to a wide range of contexts, it has three scope

conditions. First, it applies to policymaking in systems where local governments exercise control

over land use within their jurisdiction. This is usually the case for renewable energy. Although cli-

mate goals and energy policy are set at the national level, permitting the development of renewable

energy is often left to local governments (Cruz 2018; Pettersson et al. 2010, see also Appendix A).

This means local politicians have some discretion over where to place renewable energy facilities.

The level of formal discretion varies from country to country, and some countries, including the

United States, are considering exempting these types of projects from local control. However, even

in areas where local governments have little formal authority, we know that local politicians can

be effective in blocking projects by lobbying state or national governments or by negotiating with

developers to place projects where local politicians prefer. As such, it seems safe to assume that

local elected officials will almost always try to exert control over what gets built where in their

jurisdictions.

Our second condition is that this discretion is checked by some degree of electoral accountabil-

ity to local constituencies for the land use decisions politicians make, in particular about the supply

and spatial location of wind turbines. This requires that voters be able to observe sufficiently prox-

imate wind turbines; that they attribute the construction of this infrastructure to decisions made by

their local representatives; and that they punish or reward their representatives with their vote at

least in part on the basis of these decisions. In line with this assumption, Stokes (2016) finds that

voters in Canada punish local incumbents who were responsible for permitting these turbines (see

also Isaksson and Gren 2024).

The third premise of our argument is that although many citizens support efforts to combat

climate change in principle, they frequently oppose renewable energy projects when these devel-

opments are sited near their communities. Stokes et al. (2023) documents significant opposition

to wind energy projects in both the US and Canada. This aligns with broader research that con-
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sistently demonstrates resistance to locally unwanted land uses (de Benedictis-Kessner and Hank-

inson 2019; Devine-Wright 2009; Furuseth 1990; Marble and Nall 2021; Sandman 1985; Stokes

2016; Trounstine 2009). However, wind energy projects also bring potential benefits such as job

creation and revenue to local governments (Urpelainen and Zhang 2022). Therefore, in jurisdic-

tions where the median voter supports climate action, the construction of wind turbines could yield

electoral advantages.

Together, these three conditions suggest that electorally motivated politicians will prioritize

placing wind turbines in areas of their jurisdictions that minimize their constituents’ exposure to

the turbines’ real or perceived negative effects. However, from a local politician’s perspective, the

suitability of a given parcel of land for turbine construction depends on several factors: the num-

ber of voters in proximity relative to the jurisdiction’s overall population; the perceived costs and

benefits of the turbine to voters; and how these perceptions vary with distance from the turbine. In

what follows, we develop a theoretical model that is based on these considerations and which gen-

erates testable predictions about how the siting decisions of electorally motivated local politicians

are influenced by the geographical shape of the jurisdiction.

A Formal Model of How Jurisdictions shape Wind Turbine Siting

In this section, we develop a parsimonious model that takes as input only the spatial distribution

of voters over a municipality—as well as some minimal functional form assumptions on voter

utilities—and produces as output a municipality-wide approval score for a proposal to site a wind

turbine at a given location within that jurisdiction. We have already argued that an electorally

motivated local politician will take the constituency’s approval into account when deciding where

in the municipality to site a new wind turbine. By enabling us to compute what that approval score

would be for any given parcel of land, our model yields testable predictions about where wind

turbines are located.

Our formal analysis begins at the level of a voter living in a spatial location i in a municipality

M. To keep matters simple—and to match the structure of the data we will eventually use in our
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empirical analysis—we can divide the municipality into small grid cells. Let voters derive some

fixed benefit b from a wind turbine project and experience a cost c that is a function of the distance

between their own location, i.e., the grid cell in which they live, and the proposed turbine location.

Thus, the utility to a voter who lives in the grid cell i of a turbine located in the grid cell j is given

by the following.

Uv(i, j) = b− c(i, j) (1)

This utility function captures the non-spatial nature of support for climate action, in contrast

with the spatial nature of not-in-my-backyard opposition to new turbine construction. The benefits

of a turbine include the energy contributed to the electrical grid and the offset of carbon emis-

sions; a sizable increase in local GDP and tax revenues (Brunner and Schwegman 2022; De Silva,

McComb and Schiller 2016; Scheifele and Popp 2024); and, potentially, modest impacts on lo-

cal employment, although the evidence is mixed (Costa and Veiga 2021; De Silva, McComb and

Schiller 2016; Scheifele and Popp 2024). Importantly, these benefits all accrue to the nation, the

climate, or the municipality, but not specifically to the turbine’s closest neighbors.

In contrast, the costs are spatially concentrated around the turbine’s location. The main drivers

of local opposition to wind turbines are environmental impacts, including effects on both wildlife

and the human environment, such as aesthetics and noise, as well as concerns about property values

(Susskind et al. 2022). Previous research suggests that these impacts are felt—or at least capitalized

into home prices—at distances of up to 4 km from the turbine when the project is directly visible

(Jarvis Forthcoming).

Our cost function c(i, j) captures how intensely the voter experiences the costs of a turbine as a

function of its distance from the voter’s own spatial location. We assume that these costs increase

as the voter’s distance to the turbine decreases, with the most proximate voters experiencing the

strongest opposition. In addition, we expect that these costs change more dramatically at smaller

distances than at large ones: for instance, voters care a lot whether the turbine is 100 or 200

meters from them, whereas they are largely indifferent between a turbine located halfway across
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the municipality and fully on the opposite side of the municipality. We capture this assumption

with the cost function:

c(i, j) = k
(

1
d(i, j)+q

)2

(2)

where d(i, j) is the distance between voter location i and turbine location j. The parameters k and

q control the shape of the cost function experienced by voters, in particular how intensely the costs

are felt relative to the benefit as well as how these costs decay over space.

In Figure 1, we illustrate this functional form with sample parameter values of b = 1, k = 1,

and q = 0. The figure plots voter utility, Uv, on the y axis, as a function d(i, j)—the distance

between a voter at location i and a turbine at location j—on the x axis. Here, the voter experiences

significant costs when the turbine is up to one unit of distance away, and it is over this interval

that the voter experiences the largest utility gains from moving further away from the turbine. The

voter’s losses plateau after two units of distance, such that the voter is nearly indifferent between a

turbine positioned four or ten units away.

Figure 1: Plot of utility function: Uv = b− k
(

1
d(i, j)+q

)2
for b = 1, k = 1, and q = 0. Distance

d(i, j) is shown on x-axis and utility is shown on the y-axis.
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With this utility structure in place, we can define the conditions under which a voter will support

or oppose an exogenous proposal to site a wind turbine at a particular location. We define this vote

choice variable, Ai, j, as a binary indicator of support from a voter living at location i to site a

turbine at location j. This binary indicator of support may be interpreted either as the voter’s

decision if the proposal were voted on directly by the constituency or as a vote to retain or replace

the politician that approved this proposal in the subsequent election. We assume that voters will

support the proposal if their utility from the proposal passing exceeds the utility from it failing. If

the proposal fails, all voters receive a reservation utility of 0: they neither receive the benefits nor

pay the costs. Then, we can write Ai, j as follows:

Ai, j =


1 if Uv > 0 → b > c(i, j)

0 if Uv < 0 → b < c(i, j)

coin flip between 1 and 0 if Uv = 0 → b = c(i, j)

(3)

It remains to aggregate Ai, j over all voters in the municipality to generate an overall approval

score, A j, that represents the proportion of the municipality’s voters that support the construction

of a wind turbine in grid cell j. We compute this vote share as the average of Ai, j in all grid cells

i ∈ M, weighted by the population in each grid cell:

A j =
∑i∈M Ai, jPi

∑i∈M Pi
(4)

where Pi is the population of voters who live in grid cell i.

The ability to compute the approval score, A j, for every grid cell j ∈M allows us to compare the

viability of different parcels of land in a municipality for the siting of wind turbines from a political,

rather than technical or economic, vantage point. Although we expect that technical and economic

considerations also play a role, our model generates empirically testable predictions about where

turbines are likely to go when local politics is a key factor. In particular, we expect that the

probability that a turbine is sited in grid cell j increases in A j. Of course, we do not expect politics
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to be the only consideration. Rather, our argument is that within the realm of technical feasibility,

the political incentives captured by A j will have some effect, and political considerations may

outweigh technical or economic efficiency if politicians are sufficiently concerned about electoral

outcomes.

Empirical Context

We examine these theoretical predictions in Denmark, a nation with a long history of wind power

development. From the 1970s onward, government subsidies and tax deductions encouraged wind

investment, initially resulting in small turbines owned privately or through cooperatives, often by

farmers. By the late 1990s, however, subsidies were phased out, and turbines grew significantly

larger, concentrating ownership among large-scale corporate investors.

A crucial feature of the Danish case is the 2007 municipal reform, which fundamentally re-

shaped the country’s political geography. This large-scale administrative overhaul consolidated

271 municipalities into 98 larger units, redrawing jurisdictional boundaries for the vast majority

of local governments (Blom-Hansen, Houlberg and Serritzlew 2014). The reform dramatically

increased the size of the average municipality, fundamentally redrawing the boundaries between

local jurisdictions, with the explicit aim of improving administrative efficiency and public service

provision (Blom-Hansen, Houlberg and Serritzlew 2014). The reform offers a valuable opportu-

nity to identify the effects of jurisdiction size and shape on siting outcomes. Because the physical

landscape and wind resources remained unchanged while political boundaries shifted, we can iso-

late how changes to jurisdictional structure—both in size and spatial configuration—affect local

decision-making about wind turbine placements.

Beyond this reform, several features of the Danish context make it an ideal setting to test our

theoretical model. First, Danish local governments have significant discretion over wind turbine

siting. Although national guidelines restrict where turbines cannot be placed, local governments

retain primary authority to decide where turbines will be allowed, subject to these constraints

(Naturstyrelsen, Miljøministeriet 2015). Municipalities designate turbine zones through local plan-
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ning processes, balancing national renewable energy targets with local environmental, landscape,

and community concerns. They must also adhere to minimum distance requirements from resi-

dences—typically four times the turbine’s height—to mitigate noise and visual impacts. Public

consultations are critical, as local governments engage in hearings and impact assessments to ad-

dress citizen concerns and potential opposition.1

Second, there has been substantial wind turbine construction. During the period we study,

thousands of turbines were built, allowing us to estimate the likelihood of turbine placement with

considerable precision.

Third, although there is broad political support for wind energy construction in Denmark, con-

sistent with its longstanding climate and renewable energy commitments (Larsen and Hvidkjær

2025), individual projects often encounter significant not-in-my-backyard (NIMBY) opposition

(Hevia-Koch and Ladenburg 2019). This creates a politically challenging environment in which

local governments must navigate the tension between ambitious national energy goals and local

resistance.

Data

We use the Danish National Grid created by Statistics Denmark. This subdivides Denmark into

45,604 1 km by 1 km grid cells. We obtain data on the location of all wind turbines in the period

2007-2021 from the Danish Energy Agency. We combine this with information on the population

of each grid cell, municipal borders, and data on the topography of each grid cell.2

Dependent Variable Our key outcome variable is whether any turbine is built in the grid cell

during the period 2007-2021. In this period around 3,000 turbines have been sited, which means

that only a small fraction of the 45,604 grid cells have had a turbine sited (<1%). Therefore,

it makes sense to only distinguish between whether or not any turbines have been constructed.

1Once approved, wind turbine installation follows a structured permitting and construction process. Developers
must obtain environmental and building permits, ensure compliance with noise limits and grid connection require-
ments, and coordinate site preparation, turbine assembly, and grid integration. The process concludes with technical
inspections and operational testing before the turbines become fully functional.

2Thanks to Kim Sønderskov and Niels Nyholt for providing the data on population distributions.
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However, results are similar regardless of how we define the dependent variable (e.g., in terms of

counts, see Appendix G).

We can visualize trends in turbine construction by looking at the share of cells in general that

hosted a turbine within that height band in a given year. We calculate the mean of the dependent

variable for each height band across all cells within each year, which is effectively the percent of

cells where it equals 1 for that year. Figure 2 shows the trends for all turbines in the dataset.
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Figure 2: Share of cells hosting turbines in a given year, using height bands.

After explosive growth of 60-80-meter-tall turbines in the late 1990s, the share of cells hosting

these midsize turbines plateaus and then begins to decline. That is because many of these turbines

were taken down in the mid-2010’s and immediately replaced with very tall (>120 meter) turbines,

which began to appear around 2008.

In defining our dependent variable, we focus on whether a single turbine that is at least 80

meters tall is built on the grid. The 80-meter threshold balances several considerations. Taller

turbines are more visible and impactful on perceptions of the local environment, making them

more likely to face opposition and requiring more strategic placement by politicians. Second,

taller turbines dominate recent developments, while smaller ones are rarely built today, making
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our focus more relevant to contemporary policymakers. At the same time, the 80-meter threshold

also ensures comparability over time, as it captures the tallest turbines consistently installed both

before and after the 2007 reform. If we were to focus on very tall turbines (> 120m), then we

would have a dependent variable without variation before 2010.

Independent Variable Our treatment is the share of a municipality’s population expected to

approve of a proposed wind turbine at a given grid cell. We estimate this quantity using our theo-

retical model (Equation 4), which takes as inputs the grid-cell population counts in a municipality.

Calculating the municipality-wide “approval score” requires selecting values for the parameters q

and k, which determine how approval decays over distance.3 To ensure these parameters reflect

real-world patterns, we select them empirically based on prior research and an objective criterion—

maximizing the predictive power of the model.

To do so, we generate a grid of candidates over the range of plausible values that accord with

intuitions and expectations derived from prior research. Our grid includes q values from 0 to

1, inclusive, incremented by 0.1, as well as k values from 1 to 20, inclusive, incremented by 1,

generating a total of 220 candidate pairs. We conduct a calibration exercise over this grid using

data from the pre-reform period (1998-2006).4 First, we randomly split the pre-reform data into a

training set (70%) and a test set (30%). Because tall turbine siting is a rare event, we oversample

the treated observations in the training set to achieve better performance. For each candidate pair

of parameter values, we compute the approval score and use it as an input into a support vector

machine (SVM) classification model along with a set of additional measures of topography, wind

capacity, and distance to the coastline. The prediction target is whether there is at least one turbine

present in the grid cell. The model is run on the training set and predictions are generated for the

test set. Then we compare these predictions to the true values and compute an F1 score, which

balances precision and recall.5

3We normalize the b parameter to 1.
4We select 1998 as the start of the pre-reform period because that is the first year in which a tall turbine appears

in the data.
5Precision is the proportion of all positive cases identified by our model that is actually correct. Recall is the
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Through this process, we select parameter values of k = 15 and q = 0.4. Figure 3 plots the

voter’s utility as a function of distance to the turbine for the chosen parameters. We see that the

decay in the cost happens most intensely over the first 2 km and that the function starts to plateau

after 5 km. Encouragingly, this pattern is consistent with previous findings that the effects of

new, tall turbines on home prices are felt up to distances of 4 km (Jarvis Forthcoming). However,

as we show in Appendix Figure C3, our results remain qualitatively robust across a wide range

of parameter values. For a more detailed discussion of the parameter tuning process, please see

Appendix C.

Figure 3: The utility function for the optimal parameter values: b = 1, k = 15, q = 0.4. Dashed
horizontal line represents the non-spatial benefit, b = 1. Dashed vertical line marks where the
benefit equals the cost, at a distance of 3.5 km.

With approval scores in hand, we can visualize how they relate to post-reform turbine siting,

starting with the municipalities of Holstebro and Lolland. These are informative municipalities as

they are hotbeds of turbine siting, but are quite different geographically and politically. Lolland

is a large island in southern Denmark and has generally supported liberal parties in the Danish

proportion of all positive cases in the data that is correctly identified by our model. The F1 score is the harmonic mean
of the two. We repeat this process twenty times per candidate pair of parameter values to smooth over any noise from
sampling the training data, and compute the average F1 score over the 20 iterations.
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parliament. In contrast, Holstebro is a largely landlocked municipality on the western edge of

Denmark and has supported conservative parties in parliamentary elections. Both municipalities

have similar land area (∼ 840 km squared), although Holstebro has 50 percent more residents

(60,000 compared to 40,000 residents in Lolland).

Figure 4: Map of Holstebro, Denmark. Cells are shaded based on expected municipal wide ap-
proval score for siting a turbine within that cell. White cells indicate a turbine was built there
post-2007.

Figure 4 shows Holstebro, Denmark. The approval scores are depicted using shading. Dark

purple areas are those where siting a turbine would be most unpopular. For example, the dark-

est part of the map is the center of the town of Holstebro. Here, less than 50 percent of voters

municipality-wide would support the location of a wind turbine. In contrast, light-shaded cells are

locations where our theoretical model predicts that turbines should win majority support. These

are largely along the east and west ends of the municipality, where there are fewer residents as a
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share of the overall population. The white cells show the actual distribution of turbines built be-

tween 2007 and 2021. The location largely followed the pattern of approval scores, staying outside

the central and unpopular region.

Figure 5 shows Lolland, Denmark. Again, dark purple areas have low approval scores where

we would not expect turbine siting. Since Lolland is a multi-core municipality, turbines are likely

to be politically feasible either between the cores or on the northern islands of the municipality.

This is supported by the actual placement of the turbines.

These visualizations provide some suggestive evidence that our approval score performs well

in predicting turbine sites. In addition, they show how the approval score outperforms more naive

heuristics, such as proximity to borders or areas with a low population density. Although these

traits are correlated with the approval score, our model directly integrates them to provide a clearer

picture of municipality-wide electoral support for this locally unwanted infrastructure. In the anal-

yses below, we demonstrate the explanatory power of the approval score in predicting turbine

siting using a regression model that links siting decisions to the approval score while controlling

for potential confounder variables.6

Analytical Strategy

We leverage the 2007 Danish municipal reform to study how jurisdictional structure influences

turbine siting decisions. This reform merged hundreds of smaller municipalities into larger juris-

dictions, redrawing their size and shape for nearly two-thirds of local governments (Blom-Hansen,

Houlberg and Serritzlew 2014). These changes shifted the composition of local electorates—and

thus altered our approval score measure for a given location—even though physical factors like

topography, wind conditions, or land use remained constant.

Our approach is therefore similar to a first-difference design, examining whether changes in

approval scores induced by the reform predict changes in turbine siting (i.e., new turbines). By

comparing the same grid cells before and after a shift in their jurisdictional boundaries, we hold

6Approval scores for every municipality in Denmark are visualized in Appendix B.
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Figure 5: Map of Lolland, Denmark. Cells are shaded based on expected municipal wide approval
score for siting a turbine within that cell. White cells indicate a turbine was built there post-2007.



constant time-invariant features of the grid cell that might otherwise confound the relationship

between political geography and turbine siting.

Figure 6 illustrates the reconfiguration of municipal boundaries before and after the reform,

showing how the electorate to which local politicians were accountable changed. Figure 7 docu-

ments the distribution of resulting approval-score shifts. Many grid cells saw little change, but a

substantial fraction experienced large increases—sometimes more than 30 percentage points—due

to being folded into new, more geographically dispersed municipalities.

Pre-2007 2007-present

Figure 6: Changing Borders of Danish Municipalities

A key remaining threat to inference is that areas where post-reform approval rose might also

be, for other reasons, more suitable for turbine siting. To address this, we include a limited set

of theoretically motivated controls. Topography, for example, influences settlement patterns and

hence the built environment, which can affect approval scores while also impacting wind capacity,

since structures and terrain can disrupt wind flow. Rugged areas may be harder to develop, while

coastal areas often face stricter aesthetic constraints. We therefore control for (1) the elevation of

each grid cell’s centroid, (2) the standard deviation of elevation surrounding each grid cell (as a

ruggedness measure), and (3) the distance to the coastline (Rediske et al. 2021; Wimhurst, Nsude
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and Greene 2023). We also directly include each grid cell’s estimated wind capacity from available

data.
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Figure 7: Change in average approval scores from the pre-reform (1980-2006) to the post-reform
period (2007-2021) across grid cells. Red line signifies the average change.

As an additional robustness check, we conduct a placebo test, examining whether reform-

induced changes in approval scores predict turbine siting before the reform took place. Finding no

such relationship would strengthen the interpretation that the post-reform association is plausibly

causal, rather than reflecting a persistent, unobserved confounder.

In modeling turbine siting, we rely on a logit framework because the outcome—whether any

turbine is sited in a grid cell—is binary. However, turbine placement is a rare event, occurring in

fewer than one percent of grid cells. Standard logistic regression struggles in such “rare event”

contexts because maximum likelihood estimation can produce biased and unstable coefficients.

In particular, with sparse events, MLE often underestimates event probabilities, inflates standard

errors, and risks separation—where coefficients go to infinity if a predictor perfectly classifies the

outcome (King and Zeng 2001).

To address these issues, we use the Firth logit estimator (Firth 1993), which adds a penalty to

the likelihood function, effectively shrinking extreme coefficients toward more reasonable values.

This correction improves coefficient stability and confidence interval coverage, and is specifically

20



recommended for rare-event data where standard logistic regression fails. Firth’s method has the

added advantage of avoiding separation problems by ensuring finite, interpretable coefficients even

when a predictor perfectly predicts turbine placement in a few cells (Rainey and McCaskey 2021;

Zorn 2005).

Finally, we cluster Huber-White standard errors at the municipal level to account for correlation

within municipalities and ensure valid inference.

Results

Before turning to the main analysis of the reform’s effects, we first describe the cross-sectional

relationship between approval scores and turbine placement during the post-reform period from

2007 to 2021. This descriptive exploration helps illustrate how the distribution of approval scores

relates to observed siting patterns in the data, without making any causal claims. We focus on the

post-reform period because it is when most tall turbines (height > 80m) were built and when the

new municipal boundaries were in effect, allowing us to use a single approval score per grid cell

and avoiding complications from pre- and post-reform differences.

Figure 8 presents a scatter plot illustrating the descriptive relationship between approval scores

and turbine siting. Notably, no turbines are sited in areas with an approval score below 0.4, while

nearly all turbines are sited in areas where the approval score exceeds 0.9—indicating that, ac-

cording to our model, about 90 percent of the local electorate would approve of a turbine in that

location. This pattern suggests that, in practice, turbines tend to be placed only in areas with over-

whelming local support, which may reflect how strong local opposition from a minority can block

projects even if a majority supports them. This descriptive relationship also highlights its strongly

nonlinear form, underscoring the need for a model like the Firth logit to address rare-event data

rather than relying on simple linear approaches.

We also formally estimate the cross-sectional relationship between approval scores and turbine

siting using standard logit and Firth logit models. Four specifications are estimated: (1) a bivariate

model; (2) a model controlling for topographic factors (hilliness, distance to the coast, elevation,
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Figure 8: Relationship between approval score and the probability of hosting a turbine in a grid
cell for turbines sited between 2007 and 2021. Red dots represent individual grid cells. Numbers
at top represent conditional probabilities of hosting a turbine in a grid cell given its approval score.

wind capacity); (3) a model with municipality fixed effects; and (4) a model that also controls for

distance to municipal borders (binned as 0–1 km, 1–3 km, 3–5 km, and 5–10 km). While model

(3) is our preferred specification, we also include model (4) to test whether our approval score still

has explanatory power after controlling for proximity to the border—a related measure that has

been used in the literature to capture the same interjurisdictional dynamics, but that is unable to

account fully for jurisdictional size, shape, and population density.

Figure 9 presents the main estimates, reporting the change in the odds ratio of turbine siting

for a one-standard deviation increase in approval score (roughly 20 percentage points). Across all

specifications, we find a statistically significant relationship between approval scores and siting.

In our preferred specification, which includes all controls and fixed effects, the odds ratio for

a one-standard deviation increase in the approval score is 1.46. This means that a one-standard

deviation increase in the approval score is associated with a 46 pct. higher odds of a turbine being

sited. As turbine construction remains rare overall, the absolute probabilities stay low, but the

pattern is still meaningful.
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Figure 9: Relationship between a standard deviation increase in approval score and the odds ratio
for the siting of a turbine in a grid cell. Thick lines represent 90% confidence intervals, thin lines
are 95% confidence intervals. Turbines sited 2007-2021. See Tables E3 and E4 for tabular form.

Changes in Approval Scores and Siting Decisions

To better isolate the relationship between approval scores and turbine siting, we turn to a first-

difference design that exploits changes over time. We construct an adjusted dependent variable

coded as one if a new turbine was sited in a grid cell after 2007, and zero if no new turbine was

placed or if a turbine was decommissioned. This approach captures how shifts in the political

attractiveness of a location—driven by changes in its approval score after the reform—relate to

subsequent siting, while holding constant any time-invariant factors that could jointly influence

jurisdictional boundaries, population distributions, and turbine siting. Because we compare the

same grid cells before and after their exposure to a boundary change, this design strengthens causal

inference by focusing on local “shocks” to approval scores induced by the reform. These time-

invariant controls include unchanging geographic or infrastructural characteristics at the grid-cell

level, such as proximity to major cities.

We estimate models using both standard logit and Firth’s logit, including bivariate models,

models with topographic controls, municipality fixed effects, and distance-to-border controls. Fig-
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ure 10 presents the key results. These results are robust to the inclusion of detailed topographic

controls and municipality fixed effects, underscoring that the effect of changes in approval scores

on turbine siting cannot be explained by differential trends in siting based on geographic or infras-

tructural features of grid cells

In our preferred specification, which incorporates both fixed effects and controls, a one-standard-

deviation increase in approval corresponds to a 60 percent increase in the odds of turbine siting.

We also implement a placebo analysis to assess whether reform-driven changes in approval

scores predict turbine siting before the reform. Finding no such relationship, as shown in Appendix

F, increases our confidence that the post-reform associations are not simply driven by unobserved,

time-invariant factors that might jointly influence approval scores and turbine placement. This

strengthens the credibility of our design by showing that it is the changes in jurisdictional struc-

ture—rather than pre-existing differences—that are linked to changes in turbine siting after the

reform.

Figure 11 examines the sensitivity of these results to varying the height cutoff for the turbines

used to define the dependent variable. Across definitions of 60, 80, and 100 meters, the estimates

remain broadly similar, with somewhat larger effects for taller turbines, which is intuitive since

taller turbines are more likely to provoke stronger local opposition.

Overall, these findings have several important implications. First, they show that reform-

driven changes in the approval score were strongly predictive of turbine siting, consistent with

the model’s predictions. A 10-percentage-point increase in approval score—about one standard

deviation—raised the odds of turbine placement by roughly 50–60 percent. Second, by holding

constant time-invariant grid-level factors, this approach isolates the role of local political support

in shaping renewable energy siting decisions.
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Figure 10: Effect of standardized change in approval score on binary indicator for gaining a turbine
post-2007, exponentiated coefficients. See Tables E5 and E6 for tabular form. (1 standard deviation
≈ 0.1.)
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Figure 11: Effect from Firth’s logit of standardized change in approval score on binary indicator
for gaining a turbine post-2007 across different turbine heights, exponentiated coefficients. See
Tables E7 and E8 for tabular form. (1 standard deviation ≈ 0.1.)



Neighboring Municipalities

A key potential criticism of the previous results is that they might simply reflect population density

near turbine sites rather than any politically meaningful mechanism. This concern is less likely

in the reform-based analysis, where the population distribution is largely stable, and only juris-

dictional boundaries change to alter approval scores. Nonetheless, to further probe this issue, we

disaggregate local population density around each grid cell into two components: residents living

inside the municipality where the grid cell is located, and residents living in neighboring munici-

palities. If our argument about political incentives holds, then only the density of voters within the

same municipality should meaningfully affect turbine siting, as local politicians are accountable

only to their own electorate.

We test this by calculating the density of the local population within a 1.5 km radius of each

grid cell, distinguishing between voters inside the municipality and those in adjacent municipali-

ties. We then relate these measures to turbine siting using a Firth logit model, first in a bivariate

specification, and then with the inclusion of topographic controls and municipality fixed effects.

Figure 12 presents these results. The figure shows that the population density of neighboring

municipalities becomes largely irrelevant for turbine siting decisions once we include municipality

fixed effects. In other words, when comparing sites within the same municipality, only the density

of local voters within that municipality predicts turbine placement. This finding is consistent with

the idea that siting decisions are primarily driven by local political considerations, reflecting the

preferences and interests of voters to whom local politicians are directly accountable.

These results raise important concerns about the democratic legitimacy of decentralizing tur-

bine siting decisions to local governments. By remaining unresponsive to residents of neighboring

municipalities—who may be equally affected by turbine externalities but lack political influence

over the permitting municipality—local governments can prioritize the interests of their own voters

while disregarding broader regional impacts. Such patterns risk undermining public satisfaction

with democratic processes and may exacerbate political polarization across municipal borders,

particularly when harms are concentrated just outside the jurisdiction making the siting decision.
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Conclusion

This paper has examined how the size and shape of political jurisdictions structure local policy

outcomes, using the siting of wind turbines in Denmark as a critical test case. While existing re-

search has extensively explored the consequences of jurisdictional structure for representation and

administrative efficiency, it has paid far less attention to how these features influence policy deci-

sions. We argue that the size and shape of jurisdictions affect governments’ incentives when siting

unwanted land uses. Larger municipalities can place such facilities so that a smaller share of their

own voters is directly affected. Moreover, irregularly shaped municipal borders can be exploited

strategically to concentrate negative impacts on areas with relatively fewer within-municipality

residents, thereby minimizing electoral costs. We formalize these insights in a theoretical model

of renewable energy siting under decentralized authority, and test it using detailed administrative

data and a rare natural experiment—Denmark’s 2007 municipal reform—which affected the juris-

diction size and boundaries of Danish local governments.

Our findings highlight three main insights. First, the approval score derived from our model—

capturing the share of voters in the municipality expected to support a turbine at a given loca-

tion—strongly predicts turbine siting. Second, leveraging the municipal reform demonstrates that

exogenous changes in the approval score, induced by boundary shifts, also influence siting out-

comes. This strengthens causal claims that local political preferences, as structured by jurisdic-

tional boundaries, systematically shape renewable energy development. Third, we show that these

patterns are highly localized: only the preferences of voters within the permitting municipality

predict turbine siting, while the interests of neighboring residents—who may still experience the

costs—are largely disregarded.

These findings carry important implications. They underscore that local political geography

can distort the allocation of renewable energy infrastructure, potentially undermining both effi-

ciency and fairness in the transition away from fossil fuels. While local control over siting may

enhance democratic legitimacy within municipalities, it can also create externalities that cross ju-

risdictional boundaries and erode regional cooperation. Future work might extend these insights to
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other types of locally unwanted land uses or to contexts beyond Denmark, exploring how different

institutional designs could balance local accountability with broader collective goals.

In sum, this study demonstrates that the ways we draw and structure political jurisdictions do

not merely affect how citizens are represented, but also profoundly shape the substance of policy

itself. As societies accelerate efforts to decarbonize, understanding these jurisdictional effects will

be crucial to ensuring that climate policy is both effective and democratically sustainable.
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A Responsibility for Siting Renewable Energy Projects in Selected countries

Table A1: Responsibility for Siting Renewable Energy Projects in Western Europe and the United
States

Country/Region Primary Responsibility Details

United States Primarily Local Governments Local zoning laws govern siting; how-

ever, state and federal agencies may influ-

ence through regulations and incentives.

(Clean Air Task Force 2024)

Denmark Local Municipalities Municipalities are responsible for

planning and permitting, aligning

with national renewable energy goals.

(Naturstyrelsen, Miljøministeriet 2015)

Germany Shared (Federal, State, Local) Federal government sets targets; states

and local authorities handle planning and

permitting, with community engagement.

(Clean Energy Wire 2025)

France Shared (Regional and Local) Regional authorities oversee planning; lo-

cal governments manage permitting and

address public concerns. (Nadaï and

Labussière 2014)

United Kingdom Shared (National and Local) Local councils approve most projects;

larger projects are handled at the national

level. (NFU Energy 2022)

Italy Regional Authorities Regions designate suitable areas and han-

dle permitting under national guidelines.

(IEA Wind 2022)

Spain Shared (Regional and Na-

tional)

Regional governments manage permit-

ting; the national government oversees

projects of strategic importance. (Reuters

2025)
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B Visualization of Prop. Approve Scores by Municipality

These visualizations show the the approval score, colored by quintile of the overall distribution,

for each municipality in Denmark. Municipalities are ordered by land area.
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Christiansø Frederiksberg Vallensbæk Rødovre

Herlev Glostrup Brøndby Dragør

Albertslund Gladsaxe Hvidovre Gentofte

Ishøj Ballerup Hørsholm Lyngby−Taarbæk

Solrød Furesø Greve Allerød

Høje−Taastrup Rudersdal Tårnby Fanø

København Fredensborg Egedal Ærø

Expected Vote Share

0.0 to 0.2 0.2 to 0.4 0.4 to 0.6 0.6 to 0.8 0.8 to 1.0
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Helsingør Halsnæs Fredericia Samsø

Læsø Hillerød Roskilde Kerteminde

Odder Lejre Køge Stevns

Frederikssund Ringsted Gribskov Struer

Nyborg Sorø Odense Middelfart

Langeland Odsherred Faxe Morsø

Skanderborg Svendborg Aarhus Nordfyns

Expected Vote Share

0.0 to 0.2 0.2 to 0.4 0.4 to 0.6 0.6 to 0.8 0.8 to 1.0
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Billund Favrskov Horsens Assens

Lemvig Hedensted Sønderborg Holbæk

Rebild Kolding Brønderslev Slagelse

Bornholm Faaborg−Midtfyn Kalundborg Frederikshavn

Næstved Ikast−Brande Vordingborg Syddjurs

Mariagerfjord Randers Skive Norddjurs

Esbjerg Vesthimmerlands Vejen Holstebro

Expected Vote Share

0.0 to 0.2 0.2 to 0.4 0.4 to 0.6 0.6 to 0.8 0.8 to 1.0
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Haderslev Silkeborg Jammerbugt Hjørring

Aabenraa Lolland Guldborgsund Vejle

Thisted Aalborg Tønder Varde

Herning Viborg Ringkøbing−Skjern

Expected Vote Share

0.2 to 0.4 0.4 to 0.6 0.6 to 0.8 0.8 to 1.0
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C Parameter Selection for the Voter’s Utility Function

We model the utility experienced by a voter at location i from a turbine at location j according to

the function:

Uv = b− k
(

1
d(i, j)+q

)2

(C1)

where d(i, j) represents the Euclidean distance between locations i and j. We normalize the (non-

spatial) benefit of a turbine, b, to 1. In this section, we describe our data-driven process for selecting

the optimal values of the parameters k and q. These parameters control the shape of the cost

function experienced by voters, in particular how intensely the costs are felt relative to the benefit

as well as how these costs decay over space.

Figure C1 presents a few illustrative examples. In panel a, we plot the function with k set to 1

and q set to 0 for reference, so that Uv is simply 1−
(

1
d(i, j)

)2
. In panel b, we increase the parameter

k to 20, keeping q fixed at 0. The resulting function has a more gradual and long-lasting decay,

such that some costs are still felt at distances up to 10 km, compared to the baseline specification

in panel a where most costs have dissipated by 2.5 km. Panel c illustrates the additional value of

the q parameter in shifting the function horizontally, thereby controlling where it crosses y = 0

(i.e., at what distance the benefit of the turbine begins to outweigh the cost). For example, setting

q = 1 compared to q = 0, holding k constant at 20, shifts this threshold from approximately 4 km

in panel b to 3 km in panel c.

We find the values of k and q that make our model most predictive of turbine sitings. To do

so, we generate a grid of candidates over the range of plausible values that accord with intuitions

and expectations derived from prior research. We are mainly guided by findings on the effects of

large and visible wind turbines on nearby property values. For instance, Jarvis (forthcoming) finds

that these price effects are present at distances up to 4 km. Our grid includes q values from 0 to

1, inclusive, incremented by 0.1, as well as k values from 1 to 20, inclusive, incremented by 1,

generating a total of 220 candidate pairs.

For each candidate pair, we run a support vector machine (SVM) classification model and

assess its performance at predicting tall turbine sitings (>80 meters). We use the pre-reform data

(1998-2006) for this calibration exercise.7 The process proceeds as follows:

7We select 1998 as the start of the pre-reform period because that is the first year in which a tall turbine appears
in the data.
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(a) b = 1, k = 1, q = 0 (b) b = 1, k = 20, q = 0

(c) b = 1, k = 20, q = 1

Figure C1: The role of the k and q parameters in the utility model. Voter’s utility function is given
in Equation C1. Dashed horizontal line represents the non-spatial benefit, b = 1.



1. Begin with a data set that has one observation per grid cell for all grid cells in Denmark.

For each grid cell, compute the municipality-wide approval score based on the municipality

boundaries during that period as well as grid-cell-level population averaged over that period.

The outcome is a binary indicator of whether a turbine over 80 meters was newly built in

that grid cell at any point during that period.

2. Divide this data set into training and test data. The training set contains 70% of the sample

and the test set the remaining 30%. Because tall turbine siting is a rare event in the data,

we significantly oversample the treated observations in the training set to achieve better

performance.

3. For each municipality-wide approval score (generated using each pair of candidate param-

eters), we run an SVM on the training data, also including the variables from our main

analysis in the model. The model is then used to generate predictions in the test data and a

confusion matrix is computed, giving us the true positives (T P), false positives (FP), true

negatives (T N), and false negatives (FN).

4. We repeat steps 2-3 20 times per candidate approval score to smooth over any noise from

sampling the training data, and compute the averages of the following metrics over the 20

iterations:

• Recall (true positive rate): Of all positive cases in the data, the proportion correctly

identified by our model: T P
T P+FN

• False negative rate: Of all positive cases in the data, the proportion incorrectly identi-

fied by our model: FN
T P+FN

• Specificity (true negative rate): Of all negative cases in the data, the proportion cor-

rectly identified by our model: T N
T N+FP

• False positive rate: Of all negative cases in the data, the proportion incorrectly identi-

fied by our model: FP
T N+FP

• Precision: Of all positive cases identified by our model, the proportion actually correct:
T P

T P+FP

• F1 Score: The harmonic mean of precision and recall: 2× Precision×Recall
Precision+Recall

• Accuracy: Of all model predictions, the proportion actually correct: T N+T P
T N+T P+FN+FP
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(a) Precision: T P
T P+FP (b) Recall: T P

T P+FN (c) F1 Score: 2× Precision×Recall
Precision+Recall

(d) Specificity: T N
T N+FP (e) False negative rate: FN

T P+FN (f) False positive rate: FP
T N+FP

(g) Accuracy: T N+T P
T N+T P+FN+FP

Figure C2: Performance metrics for the candidate parameter values. Performance for the chosen
values (k = 15, q = 0.4) is highlighted in red. Dashed line shows mean performance among all
candidates.



Figure C2 presents the results. We choose to maximize the F1 score and choose values of

k = 15 and q = 0.4 to accomplish this goal. Figure 3 plots the voter’s utility as a function of

distance to the turbine for the chosen parameters. We see that the decay in the cost happens most

intensely over the first 2 km and that the function starts to plateau after 5 km. This pattern is

consistent with findings from the literature in economics on the effects of wind turbines on nearby

home prices: for instance, Jarvis (Forthcoming) finds that effects on prices are felt at distances up

to 4 km from new, tall turbines.

Finally, in Figure C3, we show the sensitivity of our main results to the choice of parameters.

We show the point estimates and 95% confidence intervals from a logistic regression with our

preferred specification from Figure 9, including all controls and municipality fixed effects. The

point estimate corresponding to our chosen parameters is marked in red: a point estimate of 0.54

(p < 0.001), corresponding to an odds ratio of 1.71. The figure shows that our chosen parameter

values yield some of the more conservative estimates of the effect of municipality-wide approval

scores on turbine siting, which are mostly concentrated between 0.40 and 2.19 (corresponding to

odds ratios of 1.50 and 4.20, respectively).

Figure C3: Sensitivity of estimates from logistic regression (main specification, with municipality
fixed effects) to parameter choices. Vertical lines represent 95% confidence intervals. Estimate
corresponding to the chosen parameter values (k = 15, q = 0.4) is marked in red.
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D Descriptive Statistics

Table D2: Descriptive statistics for 1x1 km grid cells

Statistic N Mean St. Dev. Min Max

∆ turbine 45,704 0.01 0.09 0 1

∆ approval 45,704 0.11 0.13 −0.69 0.81

Approval (pre-2007) 45,704 0.83 0.18 0.00 1.00

Average population 2007-2020 45,704 122.00 574.96 0.00 22,932.20

Elevation (m) 45,700 29.11 24.92 −6.94 159.45

Mean wind capacity 45,491 477.22 114.93 0.00 1,012.69

Hilliness 45,698 7.91 5.95 0.00 57.68

Distance to coast 45,704 9.55 9.67 0.0000 49.10
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E Results in Tabular Form
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Model 1 Model 2 Model 3 Model 4

Approval (standardized) 0.834∗∗∗ 0.550∗∗ 0.377∗ 0.343∗

(0.238) (0.194) (0.147) (0.163)

Elevation −0.003 −0.008 −0.009

(0.016) (0.015) (0.015)

Elevation, squared −0.000 −0.000 −0.000

(0.000) (0.000) (0.000)

Hilliness −0.167∗∗∗ −0.211∗∗∗ −0.211∗∗∗

(0.035) (0.044) (0.041)

Hilliness, squared 0.004∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.001) (0.001) (0.001)

Distance to coast 0.086 0.102∗ 0.099∗

(0.046) (0.048) (0.047)

Distance to coast, squared −0.002 −0.002∗ −0.002∗

(0.001) (0.001) (0.001)

Mean wind capacity 0.015∗ 0.018∗∗ 0.019∗∗

(0.007) (0.007) (0.007)

Mean wind capacity, squared −0.000∗ −0.000∗∗ −0.000∗∗

(0.000) (0.000) (0.000)

Border distance 0-1 km 0.350

(0.220)

Border distance 1-3 km −0.147

(0.215)

Border distance 3-5 km −0.283

(0.288)

Border distance 10+ km 0.298

(0.253)

(Intercept) −4.748∗∗∗ −9.080∗∗∗ −9.909∗∗∗ −9.971∗∗∗

(0.157) (2.454) (2.306) (2.335)

Municipal FE No No Yes Yes

AIC 5092.616 4890.941 4602.141 4589.066

BIC 5110.076 4978.193 5535.731 5557.556

Log Likelihood −2544.308 −2435.471 −2194.070 −2183.533

Deviance 5088.616 4870.941 4388.141 4367.066

Num. obs. 45704 45485 45485 45485
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table E3: Effect of standard deviation increase in approval score on hosting a turbine (>80 m,
cross-sectional logit model).



Model 1 Model 2 Model 3 Model 4

Approval (standardized) 0.822∗∗∗ 0.535∗∗ 0.361∗∗∗ 0.326∗∗

(0.234) (0.188) (0.107) (0.119)

Elevation −0.004 −0.009 −0.010

(0.016) (0.013) (0.013)

Elevation, squared −0.000 0.000 0.000

(0.000) (0.000) (0.000)

Hilliness −0.169∗∗∗ −0.211∗∗∗ −0.210∗∗∗

(0.035) (0.038) (0.036)

Hilliness, squared 0.004∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.001) (0.001) (0.001)

Distance to coast 0.085 0.101∗ 0.098∗

(0.046) (0.044) (0.043)

Distance to coast, squared −0.002 −0.002∗ −0.002∗

(0.001) (0.001) (0.001)

Mean wind capacity 0.015∗ 0.018∗∗ 0.018∗∗

(0.007) (0.006) (0.006)

Mean wind capacity, squared −0.000∗ −0.000∗∗ −0.000∗∗

(0.000) (0.000) (0.000)

Border distance 0-1 km 0.354

(0.201)

Border distance 1-3 km −0.142

(0.197)

Border distance 3-5 km −0.278

(0.265)

Border distance 10+ km 0.296

(0.237)

(Intercept) −4.743∗∗∗ −8.992∗∗∗ −9.730∗∗∗ −9.787∗∗∗

(0.155) (2.421) (2.124) (2.141)

Municipal FE No No Yes Yes

Deviance (Null) 5164.518 5150.896 5150.896 5150.896

df.null 45703 45484 45484 45484

Log Likelihood −2544.314 −2435.571 −2214.021 −2203.626

AIC 5092.627 4891.141 4642.042 4629.251

BIC 5110.087 4978.393 5575.632 5597.741

Deviance 5088.627 4871.141 4428.042 4407.251

DF Resid. 45702 45475 45378 45374

nobs 45704 45485 45485 45485
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table E4: Effect of standard deviation increase in approval score on hosting a turbine (>80 m,
cross-sectional Firth’s logit model).



Model 1 Model 2 Model 3 Model 4

∆ approval (standardized) 1.003∗∗ 0.729∗ 0.653∗ 0.652∗

(0.388) (0.312) (0.274) (0.305)

Approval (pre-2007) 8.422∗∗ 6.280∗∗ 4.919∗∗ 4.765∗

(2.696) (2.075) (1.673) (1.936)

Elevation −0.014 −0.010 −0.011

(0.015) (0.015) (0.015)

Elevation, squared −0.000 0.000 0.000

(0.000) (0.000) (0.000)

Hilliness −0.166∗∗∗ −0.204∗∗∗ −0.204∗∗∗

(0.043) (0.056) (0.053)

Hilliness, squared 0.003∗ 0.004∗ 0.004∗∗

(0.001) (0.002) (0.002)

Distance to coast 0.063∗ 0.105∗ 0.104∗

(0.026) (0.054) (0.050)

Distance to coast, squared −0.002∗ −0.002 −0.002

(0.001) (0.001) (0.001)

Mean wind capacity 0.017∗ 0.017∗

(0.007) (0.007)

Mean wind capacity, squared −0.000∗ −0.000∗

(0.000) (0.000)

Border distance 0-1 km 0.411

(0.262)

Border distance 1-3 km −0.102

(0.240)

Border distance 3-5 km −0.156

(0.321)

Border distance 10+ km 0.459

(0.237)

(Intercept) −11.970∗∗∗ −9.273∗∗∗ −13.930∗∗∗ −13.977∗∗∗

(2.281) (1.776) (2.379) (2.525)

Municipal FE No No Yes Yes

AIC 4332.875 4179.240 3895.719 3883.458

BIC 4359.065 4257.807 4838.034 4860.673

Log Likelihood −2163.437 −2080.620 −1839.860 −1829.729

Deviance 4326.875 4161.240 3679.719 3659.458

Num. obs. 45704 45694 45485 45485
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table E5: Effect of standardized change in approval score on gaining a turbine post-2007 (>80 m,
first difference logit model).



Model 1 Model 2 Model 3 Model 4

∆ approval (standardized) 0.980∗∗ 0.636∗ 0.612∗∗ 0.611∗∗

(0.377) (0.310) (0.191) (0.213)

Approval (pre-2007) 8.235∗∗ 5.468∗ 4.625∗∗∗ 4.465∗∗∗

(2.615) (2.128) (1.092) (1.299)

Elevation −0.005 −0.011 −0.012

(0.015) (0.012) (0.012)

Elevation, squared −0.000 0.000 0.000

(0.000) (0.000) (0.000)

Hilliness −0.169∗∗∗ −0.208∗∗∗ −0.207∗∗∗

(0.039) (0.041) (0.039)

Hilliness, squared 0.003∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.001) (0.001) (0.001)

Distance to coast 0.104∗ 0.104∗ 0.103∗

(0.046) (0.048) (0.045)

Distance to coast, squared −0.002∗ −0.002∗ −0.002∗

(0.001) (0.001) (0.001)

Mean wind capacity 0.014∗ 0.017∗∗ 0.017∗∗

(0.007) (0.006) (0.006)

Mean wind capacity, squared −0.000 −0.000∗∗ −0.000∗∗

(0.000) (0.000) (0.000)

Border distance 0-1 km 0.414

(0.233)

Border distance 1-3 km −0.097

(0.213)

Border distance 3-5 km −0.151

(0.290)

Border distance 10+ km 0.457∗

(0.220)

(Intercept) −11.805∗∗∗ −13.417∗∗∗ −13.454∗∗∗ −13.486∗∗∗

(2.209) (2.849) (2.030) (2.137)

Municipal FE No No Yes Yes

Deviance (Null) 4406.618 4393.392 4393.392 4393.392

df.null 45703 45484 45484 45484

Log Likelihood −2163.450 −2062.660 −1862.474 −1852.468

AIC 4332.900 4147.320 3940.947 3928.937

BIC 4359.089 4243.296 4883.262 4906.152

Deviance 4326.900 4125.320 3724.947 3704.937

DF Resid. 45701 45474 45377 45373

nobs 45704 45485 45485 45485
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table E6: Effect of standardized change in approval score on gaining a turbine post-2007 (>80 m,
first difference Firth’s logit model).



Model 1 Model 2 Model 3

∆ approval (standardized) 0.698∗ 0.423 0.419∗

(0.338) (0.273) (0.189)

Approval (pre-2007) 6.398∗∗ 4.154∗ 3.500∗∗∗

(2.291) (1.822) (1.061)

Elevation −0.003 −0.010

(0.014) (0.012)

Elevation, squared −0.000 0.000

(0.000) (0.000)

Hilliness −0.169∗∗∗ −0.205∗∗∗

(0.039) (0.040)

Hilliness, squared 0.003∗∗ 0.005∗∗∗

(0.001) (0.001)

Distance to coast 0.098∗ 0.101∗

(0.044) (0.046)

Distance to coast, squared −0.002∗ −0.002∗

(0.001) (0.001)

Mean wind capacity 0.012 0.015∗∗

(0.007) (0.006)

Mean wind capacity, squared −0.000 −0.000∗∗

(0.000) (0.000)

(Intercept) −10.202∗∗∗ −11.570∗∗∗ −11.804∗∗∗

(1.916) (2.628) (1.913)

Municipal FE No No Yes

Deviance (Null) 4501.931 4488.660 4488.660

df.null 45703 45484 45484

Log Likelihood −2216.511 −2121.311 −1926.844

AIC 4439.021 4264.623 4069.688

BIC 4465.211 4360.599 5012.002

Deviance 4433.021 4242.623 3853.688

DF Resid. 45701 45474 45377

nobs 45704 45485 45485
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table E7: Effect of standardized change in approval score on gaining a turbine post-2007 (>60 m,
first difference Firth’s logit model).



Model 1 Model 2 Model 3

∆ approval (standardized) 1.246∗∗ 0.865∗ 0.657∗∗∗

(0.420) (0.345) (0.193)

Approval (pre-2007) 9.940∗∗∗ 6.915∗∗ 4.909∗∗∗

(2.996) (2.453) (1.107)

Elevation −0.006 −0.011

(0.015) (0.013)

Elevation, squared −0.000 0.000

(0.000) (0.000)

Hilliness −0.181∗∗∗ −0.226∗∗∗

(0.037) (0.041)

Hilliness, squared 0.004∗∗∗ 0.005∗∗∗

(0.001) (0.001)

Distance to coast 0.090 0.089∗

(0.046) (0.045)

Distance to coast, squared −0.002 −0.002

(0.001) (0.001)

Mean wind capacity 0.013 0.015∗∗

(0.007) (0.006)

Mean wind capacity, squared −0.000 −0.000∗∗

(0.000) (0.000)

(Intercept) −13.297∗∗∗ −14.261∗∗∗ −13.799∗∗∗

(2.545) (3.043) (1.875)

Municipal FE No No Yes

Deviance (Null) 4310.775 4297.592 4297.592

df.null 45703 45484 45484

Log Likelihood −2111.537 −2009.693 −1805.952

AIC 4229.074 4041.387 3827.904

BIC 4255.264 4137.363 4770.218

Deviance 4223.074 4019.387 3611.904

DF Resid. 45701 45474 45377

nobs 45704 45485 45485
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table E8: Effect of standardized change in approval score on gaining a turbine post-2007 (>100
m, first difference Firth’s logit model).



Model 1 Model 2 Model 3 Model 4

Own density (logged, std.) −0.534∗∗∗ −0.394∗∗∗ −0.323∗∗∗ −0.313∗∗∗

(0.066) (0.084) (0.073) (0.073)

Elevation 0.000 −0.005 −0.006

(0.015) (0.013) (0.013)

Elevation, squared −0.000 −0.000 −0.000

(0.000) (0.000) (0.000)

Hilliness −0.144∗∗∗ −0.183∗∗∗ −0.184∗∗∗

(0.033) (0.035) (0.034)

Hilliness, squared 0.003∗∗∗ 0.004∗∗∗ 0.004∗∗∗

(0.001) (0.001) (0.001)

Distance to coast 0.093∗ 0.105∗ 0.106∗

(0.045) (0.045) (0.044)

Distance to coast, squared −0.002∗ −0.002∗ −0.002∗

(0.001) (0.001) (0.001)

Mean wind capacity 0.018∗ 0.020∗∗ 0.020∗∗

(0.007) (0.006) (0.006)

Mean wind capacity, squared −0.000∗ −0.000∗∗ −0.000∗∗

(0.000) (0.000) (0.000)

Border distance 0-1 km 0.228

(0.209)

Border distance 1-3 km −0.159

(0.198)

Border distance 3-5 km −0.274

(0.268)

Border distance 10+ km 0.305

(0.261)

(Intercept) −4.736∗∗∗ −9.759∗∗∗ −10.366∗∗∗ −10.316∗∗∗

(0.157) (2.390) (2.194) (2.186)

Municipal FE No No Yes Yes

Deviance (Null) 5164.518 5150.896 5150.896 5150.896

df.null 45703 45484 45484 45484

Log Likelihood −2501.404 −2419.045 −2198.313 −2190.417

AIC 5006.808 4858.089 4612.627 4602.833

BIC 5024.267 4945.341 5554.942 5571.324

Deviance 5002.808 4838.089 4396.627 4380.833

DF Resid. 45702 45475 45377 45374

nobs 45704 45485 45485 45485
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table E9: Effect of own local population density (logged) on hosting a turbine (>80 m, cross-
sectional Firth’s logit model).



Model 1 Model 2 Model 3 Model 4

Neighboring density (logged, std.) 0.026 0.141∗ 0.218∗∗∗ 0.104∗∗∗

(0.062) (0.060) (0.056) (0.073)

Elevation −0.004 −0.010 −0.011

(0.015) (0.013) (0.013)

Elevation, squared −0.000 0.000 0.000

(0.000) (0.000) (0.000)

Hilliness −0.176∗∗∗ −0.216∗∗∗ −0.216∗∗∗

(0.034) (0.037) (0.034)

Hilliness, squared 0.004∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.001) (0.001) (0.001)

Distance to coast 0.106∗ 0.107∗ 0.109∗

(0.045) (0.043) (0.044)

Distance to coast, squared −0.002∗ −0.002∗ −0.002∗

(0.001) (0.001) (0.001)

Mean wind capacity 0.019∗∗ 0.020∗∗∗ 0.019∗∗

(0.007) (0.006) (0.006)

Mean wind capacity, squared −0.000∗ −0.000∗∗∗ −0.000∗∗

(0.000) (0.000) (0.000)

Border distance 0-1 km 0.269

(0.209)

Border distance 1-3 km −0.090

(0.198)

Border distance 3-5 km −0.258

(0.268)

Border distance 10+ km 0.278

(0.261)

(Intercept) −4.582∗∗∗ −10.254∗∗∗ −10.160∗∗∗ −10.081∗∗∗

(0.164) (2.313) (2.078) (2.186)

Municipal FE No No Yes Yes

Deviance (Null) 5164.518 5150.896 5150.896 5150.896

df.null 45703 45484 45484 45484

Log Likelihood −2582.135 −2449.119 −2213.089 −2207.846

AIC 5168.270 4918.238 4640.179 4637.693

BIC 5185.730 5005.489 5573.769 5606.183

Deviance 5164.270 4898.238 4426.179 4415.693

DF Resid. 45702 45475 45378 45374

nobs 45704 45485 45485 45485
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table E10: Effect of neighboring local population density (logged) on hosting a turbine (>80 m,
cross-sectional Firth’s logit model).



F Placebo Test

As a placebo test, we use the same model as in Figure 10 to measure the effect of a change in the

approval score on the location of a turbine before 2007. Figure F4 shows that the increase in the

approval score of a grid cell after reform was not associated with its hosting of a turbine before the

2007 reform.
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Figure F4: Effect of standardized change in approval score on binary indicator for gaining a tur-
bine pre-2007, exponentiated coefficients. See Tables F11 and F12 for tabular form. (1 standard
deviation ≈ 0.1.)
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Model 1 Model 2 Model 3 Model 4

∆ approval (standardized) −0.305 −0.367 −0.340 −0.293

(0.409) (0.381) (0.430) (0.449)

Approval (pre-2007) 2.679 1.543 −0.357 −0.036

(1.591) (1.651) (1.937) (2.093)

Elevation −0.000 −0.012 −0.014

(0.030) (0.024) (0.025)

Elevation, squared 0.000 −0.000 0.000

(0.000) (0.000) (0.000)

Hilliness −0.127∗∗ −0.194∗∗∗ −0.194∗∗∗

(0.048) (0.058) (0.059)

Hilliness, squared 0.003∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.001) (0.001) (0.001)

Distance to coast 0.021 0.082 0.084

(0.076) (0.088) (0.091)

Distance to coast, squared 0.000 −0.002 −0.002

(0.001) (0.002) (0.002)

Mean wind capacity 0.022 0.034∗ 0.034

(0.014) (0.017) (0.017)

Mean wind capacity, squared −0.000 −0.000∗ −0.000

(0.000) (0.000) (0.000)

Border distance 0-1 km −0.153

(0.485)

Border distance 1-3 km −0.549

(0.474)

Border distance 3-5 km −0.593

(0.473)

Border distance 10+ km 0.035

(0.540)

(Intercept) −8.565∗∗∗ −13.783∗∗ −14.744∗∗ −14.729∗∗

(1.369) (4.413) (5.512) (5.630)

Municipal FE No No Yes Yes

AIC 1379.456 1362.938 1377.564 1380.224

BIC 1405.646 1458.915 2319.878 2357.439

Log Likelihood −686.728 −670.469 −580.782 −578.112

Deviance 1373.456 1340.938 1161.564 1156.224

Num. obs. 45704 45485 45485 45485
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table F11: Effect of standardized change in approval score on gaining a turbine pre-2007 (>80 m,
first difference logit model, placebo).



Model 1 Model 2 Model 3 Model 4

∆ approval (standardized) −0.363 −0.417 −0.349 −0.315

(0.371) (0.335) (0.198) (0.203)

Approval (pre-2007) 2.181 1.073 −0.569 −0.332

(1.319) (1.374) (0.743) (0.791)

Elevation −0.002 −0.014 −0.016

(0.028) (0.018) (0.018)

Elevation, squared 0.000 0.000 0.000

(0.000) (0.000) (0.000)

Hilliness −0.129∗∗ −0.191∗∗∗ −0.191∗∗∗

(0.045) (0.039) (0.039)

Hilliness, squared 0.003∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.001) (0.001) (0.001)

Distance to coast 0.021 0.079 0.080

(0.072) (0.063) (0.064)

Distance to coast, squared 0.000 −0.002 −0.002

(0.001) (0.001) (0.001)

Mean wind capacity 0.021 0.032∗∗ 0.032∗∗

(0.013) (0.011) (0.011)

Mean wind capacity, squared −0.000 −0.000∗∗ −0.000∗∗

(0.000) (0.000) (0.000)

Border distance 0-1 km −0.115

(0.323)

Border distance 1-3 km −0.516

(0.321)

Border distance 3-5 km −0.561

(0.326)

Border distance 10+ km 0.045

(0.385)

(Intercept) −8.122∗∗∗ −12.970∗∗ −13.801∗∗∗ −13.678∗∗∗

(1.132) (4.079) (3.723) (3.691)

Municipal FE No No Yes Yes

Deviance (Null) 1400.207 1399.265 1399.265 1399.265

df.null 45703 45484 45484 45484

Log Likelihood −686.798 −670.835 −611.551 −610.436

AIC 1379.596 1363.670 1439.103 1444.872

BIC 1405.786 1459.647 2381.418 2422.087

Deviance 1373.596 1341.670 1223.103 1220.872

DF Resid. 45701 45474 45377 45373

nobs 45704 45485 45485 45485
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table F12: Effect of standardized change in approval score on gaining a turbine pre-2007 (>80 m,
first difference Firth’s logit model, placebo).



G Modeling Count Data

To model the effect of a change in approval scores on the number of turbines constructed, we need

to account for both the skew of our data and the high number of cells without turbines (count zero).

Testing for dispersions shows that our data are better suited for a negative binomial rather than a

Poisson model. To handle the concentration of zeros, we use a hurdle model. The “Zero model”

results help identify the factors related to the presence or absence of turbines in a given cell. The

results of the “Count model” show the factors influencing the number of turbines in a grid cell,

conditional on nonzero counts.

We use the same change in approval score design of our analysis, measuring the relationship

between change in approval scores from pre- to post-municipal reform on the number of post-

2007 turbines, controlling for pre-2007 approval score. Because our dependent variable is now the

number of turbines post-2007 (rather than a change in the number of turbines), we include a control

for the number of turbines in a cell before 2007. We use only linear definitions of our control

variables, as the regression is unable to estimate values for the quadratic definitions when using

this functional form. However, results on our parameter of interest (Approval) are substantively

the same regardless of whether linear or quadratic controls are included. We use robust standard

errors clustered at the municipal-level.

As shown in Table G13, a standard deviation change in approval score post-2007 reform is

associated with a 119% increase in the odds of hosting any turbines post-2007.8 In contrast, a

standard deviation change in approval score is not associated with a statistically significant change

in the odds of hosting an additional turbine conditional on hosting any at all.

That the main effect of approval score is on whether to host any turbines—rather than an

additional turbine—is not surprising given the unobserved variation that can occur in the number

of turbines sited in a grid cell. For example, larger turbines need more space between them in

order to maximize their energy efficiency. Therefore, it is unclear whether two 80-meter turbines

are a more intense outcome compared to one 120-meter turbine. Alternative approaches, such as

the cumulative turbine height in a given cell, require strong assumptions about the linear additive

effects of turbine height. Instead, we believe that political conflict occurs most closely at the point

of deciding to site new turbines, rather than the number of turbines.

8(e0.784 −1)×100 = 119%
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Model 1 Model 2

Count model: (Intercept) −2.337 −1.835

(1.240) (1.176)

Count model: ∆ approval (standardized) 0.258 0.216

(0.212) (0.196)

Count model: Approval (pre-2007) 3.090∗ 2.626∗

(1.432) (1.317)

Count model: Num. turbines (pre-2007) 0.221∗∗∗ 0.210∗∗∗

(0.027) (0.025)

Zero model: (Intercept) −11.613∗∗∗ −9.889∗∗∗

(1.520) (1.277)

Zero model: ∆ approval (standardized) 0.964∗∗∗ 0.784∗∗∗

(0.272) (0.232)

Zero model: Approval (pre-2007) 7.963∗∗∗ 6.266∗∗∗

(1.768) (1.484)

Zero model: Num. turbines (pre-2007) 8.907∗∗∗ 9.556∗∗∗

(1.070) (1.369)

Count model: Elevation 0.001

(0.003)

Count model: Hilliness −0.042∗∗∗

(0.013)

Count model: Distance to coast −0.002

(0.006)

Count model: Mean wind capacity 0.000

(0.000)

Zero model: Elevation −0.013∗∗∗

(0.004)

Zero model: Hilliness −0.108∗∗∗

(0.017)

Zero model: Distance to coast 0.022∗∗

(0.007)

Zero model: Mean wind capacity 0.001∗

(0.001)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table G13: Effect of increase in approval score on gaining a turbine post-2007 (>80 m, first
difference negative binomial hurdle model).
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